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SURVEY

As I mentioned in the Survey of the April 15, 1963 Quarterly Progress

Report, I have written a report on the double point groups, to supplement the

material which has been presented in several recent Progress Reports on

various space groups. This contribution is neither very original nor very com-

plete. However, I felt that the material on the double groups in the literature

was somewhat difficult for a beginner to read, and it seemed worth while to

present a treatment, along the lines which I had been using for the single groups,

which would introduce the reader to the general ideas, as well as to a number of

specific applications. It is becoming very clear that for energy band studies of

crystals containing atoms of even moderately high atomic number, the treatment

of the spin-orbit and other relativistic effects is imperative, and the use of the

double groups is just as necessary here as the use of the single groups is for

any energy band problem. I hope that this contribution will help in making the

technique of treating these problems more widely understood.

Dr. Switendick gives in the present Quarterly Progress Report an

account more complete than he has given previously of his work on the energy

bands in NiO. This account covers most of the work in his thesis. Since his

conclusions are interesting, and since the behavior of NiO has caused a great deal

of speculation in the past, it may be worth while for me to summarize the situa-

tion here. NiO has the sodium chloride structure. It is known to be an insulator,

and to be antiferromagnetic. If it were built out of ions, the Ni++ ion would have

eight electrons outside the argon shell, and the 0-" ion would have a completed

neon shell. One would conclude that the Ni++ ion, with only eight out of the ten

d electrons present, would have a partially filled d band, which would lead to

conducting properties, contrary to what is found. Switendick's first calcula-

tion, a straightforward one, verifies this fact.

__ _ _ _ _ _ _ __ _ _ _ _ _ _ _
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With a magnetic material, however, there can be two separate energy
bands, one for spins up, the other for spins down. These bands would be

separated by an exchange effect. It could be that one of these bands would be

depressed enough so that it would be filled, the other raised enough so that it
would be partly empty. Each of these bands would hold five electrons per atom,

so that if the lower one were full, and the upper one contained three electrons
per atom, we should account for the proper number of electrons. The second

part of Switendick's calculation is an estimate of the amount of separation be-
tween these two bands, and the verification that the upper band falls in the

general region of the band containing the outer oxygen electrons, so that this
upper d band might reasonably be partly filled.

Even this, however, would not lead to the insulating properties of
nickel, unless the upper d band were split, by a crystalline field effect, into

a lower occupied band holding three electrons, and an upper empty one holding
two. This is the sort of crystal field effect which is often seen, and it is not
unreasonable. The third part of Switendick's work is a demonstration that the

integrals resulting in the crystal splitting might plausibly be great enough, in
this case, to produce such a splitting.

This work of Switendick is very preliminary, with many unfinished

points, but nevertheless it points a way to what might be an explanation of
this puzzling substance, an explanation which had been suspected years ago,

but which was too vague to believe without quantitative calculation. Before

it can be accepted, one must make the calculation self-consistent, to get a

reasonable estimate of the amount of charge in each of the ions, and to give a

reliable estimate of the splitting of the bands, which depends greatly on the

ionicity. Also one must set up the calculation in a form appropriate to an anti-
ferromagnetic substance; Switendick's calculation is more suited to a hypo-

thetical ferromagnetic case. Furthermore, one must examine the experimental
fact that the crystal remains insulating above the Neel temperature, and its

implications regarding the band structure. In spite of these shortcomings, still
the present work represents real progress. It should be pointed out that though
real self-consistency is not achieved, nevertheless Switendick has taken one
step in this direction: he has investigated the charge distribution arising from

his wave functions, the first step toward computing the field of this charge dis-

tribution, and hence toward an iterative approach to self-consistency.
This question of self-consistency, using the APW method, is one with

which I have been concerned recently. In the Quarterly Progress Report of
next October, I hope to report investigations into approximate ways of determi-

ning the potential throughout the crystal arising from the actual charge distri-

bution found by the APW method, and the correction of the method to take
account of this potential, rather than being limited to the present case of
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spherical potentials within the spherical atoms, and a constant potential between.

The first step involved in this is a careful study of the Ewald problem of finding

the potential arising from a lattice of positive point charges, plus a uniformly

distributed negative charge density. This study, in which I have had the

assistance of Mr. de Cicco, is now completed, and as I mentioned, will be

reported in the next Progress Report.

In addition to this work on crystalline problems and energy bands, the

group working on molecular structure and integrals has been very active.

Dr. Harrison reports his work on the use of Gaussian wave functions, which of
course is originally an outgrowth of the work of Boys, and which a number of

members of the group are concerned with. We are actively working on these

methods along with the zeta-function method of Barnett and Coulson, and

cross-checks are proving very valuable. Harrison has been testing his results

on neon and HF, and has been developing rules for the optimum choice of para-

meters for the Gaussians. At the same time Ellis and others are going on with

work on the zeta-function method, and are making good progress, so that

applications to various molecules can be expected soon. The work which

Moskowitz has been doing in collaboration with Barnett on benzene is reported

in the present contribution in more detail than previously.

Since the preceding Quarterly Progress Report Drs. Quelle and

Woznick have left the group, as mentioned in the preceding Quarterly Progress

Report. Dr. Mattheiss left on June 1, 1963, to take a position with the Bell

Telephone Laboratories, Inc., at Murray Hill, where he will continue his
energy band work. We have had an added member of the group working on

molecular structure, Russell M. Pitzer, who has been informally connected

with the group for some months. He was working for his doctorate in the

chemistry department at Harvard, and joined the group after completion of the

requirements for the degree, taking an active part in the molecular calculations.
He will be leaving during the summer to take a position at the California

Institute of Technology. Several other members will also be leaving shortly,

as will be mentioned in the next Quarterly Progress Report. We also have a

new graduate student, Leon Gunther, who has just started work.

J. C. Slater
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4.

BASIS FUNCTIONS FOR THE DOUBLE POINT GROUPS

John C. Slater

I. Introduction

The point groups operate on functions of the coordinates, and consist

of rotations and reflections which leave one point in space invariant. They are

fundamental to the study of the space groups. As is well known, the continuous

group of all rotations has one irreducible representation for each odd dimen-

sionality 21+1, where I is an integer going from zero to infinity. The basis

functions can be taken to be the 21+1 spherical harmonics corresponding to the

values of m from -1 to 1. In atomic problems with integral quantum numbers,

we can associate the various irreducible representations with different values

of the quantum number equal to the total angular momentum of the system.

This formulation of the problem has no place for the half-integral quan-

tum numbers. In quantum mechanics we are familiar with half-integral angular

momenta 1, such that m, going from -1 to I by integral steps, has an even rather

than an odd number of values, so that we meet irreducible representations of

even dimensionality. We cannot use ordinary functions of space as basis functions

for such irreducible representations. We must rather use spin-orbitals, com-

posed of a function of space, and a spin function, which can be taken to be formed

from the two Pauli spin functions Q and P. In elementary treatments of quantum

mechanics, one is used to having the spin quantized only along a fixed axis,

usually the z axis, or the axis of spherical polar coordinates or cylindrical

coordinates. Then we have the functions a and P, the first representing the case

where the spin is along the + direction along the axis, the second representing

the case where the spin is along the - direction. Once we start rotating axes

in space, however, we meet a more general situation in which we must describe

the possibility that the spin points along any arbitrary direction.
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There is an immediate complication which arises, as soon as we con-
sider the rotation of axes as applied to the functions a and A. Let us first con-

sider only rotation about the z axis, so that the axis of quantization remains
fixed. In many ways the functions a and P resemble ordinary spherical harmonics
set up, in some sort of way, for half-integral 1's, in particular for I a 1/2. This
would lead to m a 1/2, -1/2, so that since the dependence of a spherical har-
monic on +, the angle of rotation around the axis of the polar coordinates, is
• im +, we may suppose that a acts like the function ei+ 2, and P like e i / 2. The
complication then arises if we make a rotation through an angle 2w. If * increases
by 2w, the function ei+/ 2 is multiplied by er i , -1, so that a (and similarly P)
changes sign on a rotation through 2w. We must rotate through 4w to come back
to the original value of the function. This complication is the origin of the idea
of the double group. For every rotation lying within a range 2w (for example,
for every rotation in the range from 0 to 2w, or from -w to w), we must have
another rotation greater or less than this by Zw, whose effect on any function of
coordinates will be identical to that of the original rotation, but whose effect on
a spin function will give the negative of the value given by the original rotation.

In particular, suppose we are considerin- a point group of the ordinary
type, consisting of a finite set of rotations, or rotations plus inversions, leaving
a point invariant, and transforming a Hamiltonian function into itself. If we let
the operations of this group operate on a function of spin, corresponding to a
half-integral angular momentum, we shall find as in the preceding paragraph
that for each operation involving a rotation, there will be another one corres-

ponding to a rotation greater by Zw, which will give a function of opposite sign
when applied to a basis function involving a spin. We shall have, then, twice as
many operations to consider as in the ordinary group, which is the reason for

describing it as a double group.
We must proceed over again from the from the beginning in discussing

this double group. We must find its multiplication table, prove that it in fact is
a group, investigate its classes, and find its irreducible representations and basis
functions for them. These quantities do not follow trivially from those of the
single group. We can see, however, that each of the basis functions and irredu-
cible representations found for the single group, and involving integral quantum
numbers, and functions of the coordinates only, will also supply basis functions

and irreducible representations for the double groups. The reason is trivial:
the new operations of the double group have the same effect on a function of

coordinates alone that the original operations had. Aside from these irreducible
representations, however, there will be other irreducible representations, called
the extra representations, whose basis functions must be written in a form in-
volving the spin functions. These extra representations have been discussed by
various writers, in particular by Koster . However, these discussions are very
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brief, and our object in the present note is to amplify the discussion, and to

indicate specifically how basis functions can be set up. This is preliminary

to a treatment of the double groups for the space groups found in crystal theory.

There, when we consider spin-orbit interaction, we are treating the motion of

an electron with a spin in a periodic potential, and we are interested in the type

of wave functions which we shall find. These must be basis functions for one of

the extra irreducible representations of the double group.

2. The Effect of a Rotation on the Spin Functions

We shall start our discussion by considering the effect of a rotation of

axes on the Pauli functions a and P. We can derive the results by analogy from

the case of the single groups. It has been shown by Wigner 2 that if we rotate

axes according to the Euler angles a, b, c (which we shall define in a moment),

a spherical harmonic Yfm(a 6) will be transformed into a linear combination of

spherical harmonics Y (6, ) with all values of m from -1 to 1. This is the

explicit statement of the fact mentioned in the preceding section, that this set

of spherical harmonics forms a set of basis functions for an irreducible repre-

sentation of the rotation group. The transformation can be written in the form

given below:

YIm(e', ') = (m')D( (R) mm Yfmt( ' ) (1)

where the coefficients of the transformation are given by

V ( ) (abc)m, = 1(t) (-l)t,4(+m)! (1-m)! (1+m'). (I-m')!
mm (1-m-t)! (f+m' -t)! t! (t+m-m')!

X e i (ma+ m'c) (cos b_2+m'-m-2t (sin b)Zt+m-m (Z)
2 2

In Eq. (1) the rotation is characterized by the symbol R, which is equivalent to

the three Euler angles a, b, c of Eq. (2). The index t is to run over those

values for which all the factorials are those of positive integers or zero. The

Euler angles are indicated in Fig. 1. The rotation of axes is defined as follows.

One first rotates the coordinates about the z axis, in a positive direction, so as

to carry x toward y, through an angle c, leading to axes xt, y', z' a z. Next one

rotates about the new y' axis, called the line of nodes, through an angle b,

leading to axes x", y" = y', z". Finally one rotates about the new z" axis

through an angle a. The final rotated axes x"'y"'z"' lead to a final set of

spherical polar coordinates r8'', such that e'is the colatitude measured from
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I=Z Zz z

z oo x Ziooo

b

yy'y"of line of modes

Iz *

of ngefortn of mo s

Fig. 1. Euler's angles for rotation of spherical harmonic*.
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the z"' axis and +' is the angle of rotation from the x' axis in the x"'y"'

plane, rotating in a positive direction about the z"'I axis.

We shall shortly convert this statement of Euler's angles into rec-

tangular coordinates, making it easier to understand. Before doing so, how-

ever, let us proceed with Eq. (2). If the spin can really be considered like an

angular momentum vector of quantum number 1/2, we should be able to find

the transformation functions for the spin by specializing Eqs. (1) and (2) for

the case I = 1/2, m = 1/2. We find from Eq. (2) that

D(I/2)(abc)I/2,1/2 
= Cos b ei(a+c)/2

2

D(/2)(ab,)1/2, 1/.2 sin b ei(a-c)/2

2

D(1/2)(ac I =- .i b ei(-a+c)/2

(1 - 2, co/2e

D (/2)(abc) 1/ 2 1 b ei(-a-c)/2 (3)
2

If we symbolize the rotation operator as R, we expect that the value of Ra will

be the corresponding function of (e', +'), just as with a function of coordinates

we should have

Rf(e, 40) = f (e 1 4, (4)

Hence, from Eq. (1), we expect that we shall have

pa = D( (abc ) * (1/2) *
1/2,1/2 a + D (abc) 1/ 2, -1/2 

from which we have

Ra =cos e -i(a+c)/2 a + sin b e -i(a-c)/2p
2 2

R= - sin b e-i(-a+c)/ 2, + cos b e-i(-a-c) / 2 (6)
2 2

These are the standard equations for the effect of a rotation on the Pauli spin
functions.
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ordinary equations for the transformation of a spherical harmonic under a ro-
tation of coordinates, there is sound reason for using the same method for the

spin functions. We recall that there is a close relation between the rotation
3and the angular momentum operators , so that the rotation operators can be

written explicitly in terms of angular momentum operators. Furthermore, we

know that the angular momentum operators for the electron spin satisfy the same

basic equations (commutation rules, etc.) as ordinary angular momentum op-

erators, so that the matrix elements of spin angular momentum follow the same
formulas as those for ordinary orbital angular momentum. Hence one could

carry through a rigorous proof that the effect of a rotation on the spin functions

would have to be given by Eq. (6), as given above.

We have mentioned that it is more convenient to describe our rotations
in terms of rectangular coordinates than in terms of Euler's angles. Therefore

let us investigate the form which Eq. (6) takes when we describe our rotation in

the form

Rf(xy, z) = f(a11x+a12y+al3z, a21x+a2 y+a2 3Z, a3 1x+a32y+a33z) (7)

in which the a's represent an orthogonal transformation with determinant of
unity. For this purpose we shall throw the transformation of coordinates des-

cribed by Euler's angles into the form given by Eq. (7). First we are directed

to rotate about the z axis in the positive direction, through an angle c. This

transforms the coordinates x, y, z into

x' = x cos c + y sin c

y' = -x sinc +ycos c

z' = z (8)

Next we rotate about the y' axis through an angle b. This transforms x', y"
z' into

x" = x' cosb - z' sinb

y"1 = y'

z" = x' sin b + z' cos b (9)

Finally we rotate about z" through an angle a:

X111 = x"1 coO a + y" sin a

y"' = -x" sin a + y cos a

z''' = zV (10)S
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We now combine these equations, so as to write x1 1 , y' , z II' in terms of
x, y, z. We find x =a x~a Z t. hrI Ia 1,y+a 13zetwhr

a 1 i Icos acos bcos c -sin asin c

a1  cos acos bsin c +sin acos c

a 1 3 ~-cos asin b

a2  =-sin acos bcos c -cos asin c

a2  ~-sin acos bsin c +cos acos c

a 23 = sin asin b

a 3 1 = sin bcos c

a 32 = sin bsin c

a 33 = cos b. (11)

If we are given the rotation in rectangular coordinates, in terms of a..j,
we can use Eq. (11) to solve for a, b, c, which can then be substituted into
Eq. (6) to find the transformation of the spin functions. Uf a 3 2 1,1 we can solve

Eq. (11) to give

a 23a1
sina =+ 23cos a = +~1

k~ -a 33 -41 -a 3

a33  3

sin c = + a 32 Cos C= + a31 (12)

,Jl - 33 Nl -a33

The upper signs are all to be used together, or the lower signs. If a3 3  1, so
that the denominators in Eq. (12) become zero, we must proceed differently.

We have two cases, a 3 3 =*1. We have the following situation:

Case 1, a 3

a11 a 22 =Cos (a+c), a12 -a 2 1 =sin (a+c)ICase 2, a 33  1 -

a 1= -a 22 - cos (a-), a 1 2 2 a 2 1 = sin (a-c) (13)
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In these latter cases, only a+c or a-c can be determined, but examination of

Eq. (6) shows that in these cases it is only these combinations which will

appear in the transformation.

We can now find the transformations from the a ijs, but when we carry

the process through, we find that there is an ambiguity in the result. From

Eqs. (12) or (13) we find the angles a, b, c, up to an additive constant of 2W.

However, in Eq. (6), it is half of these angles which appear. Hence if any of

the angles is increased by 2w, the coefficients of Eq. (6) change sign. This is

the ambiguity which we have referred to in the first section: corresponding to

each operator of the point group we find two operators of the double group. We

shall denote one of these operators as R, the other as R; we take up later the

question as to which of the two to denote as R, which as R. We find on exami-

nation that the ambiguity of sign resulting from the A in Eq. (12) does not intro-

duce any additional ambiguity into the final results; we can just as well use

only the upper sign in Eq. (12), and we shall get the same final answers.

3. Examples of Rotation of Coordinates

Now we shall carry through some specific examples to illustrate the

application of these methods. Let us first carry out a rotation about the z

axis, which therefore does not change the axis of quantization. This is such a

rotation as we meet in the operations of the group CN' where the operator Xq

is defined by the equation
4

X q + 2(q) (14)
N

If we put this into rectangular coordinates, we have x = r cos *, y = r sin 0,

z = z (where r, +, z are cylindrical coordinates). Thus *(4 + 2Wq) stands for
N

t(r cos (1 + -q), r sin + q), z) (15)
N N

When we work this out, it becomes

41(xcooZwq y sin Zq , x sin 2wq + ycos 2q z) (16)
N N N N

so that we have

a 1 1 = cos , ai = - sin - q, a 1 3 = 0

a3 1 = 0, a 3 2 = 0, a3 3 = 1 (17)
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We then have Case I of Eq. (13), leading to

cos (a+c) = cos 2T9-. sin (a+c) = - sin !wS (18)
N N

from which the obvious solution is a+c = - 2wq/ N. though we could also have a

value 2- greater. Since a = cos b = 1, we haveb = 0 (or 2). If we choose

b = 0, a+c - 2iq]N. and substitute into Eq. (6), we have

X qa = e w i q / N a, X q0 e--f i q / N  (19)

These are just what we should expect from a quantum number of 1/2 for a,

-1/2 for P; the general rule for the effect of X operating on a wave function

like eim* is that Xqe im * = e elm#. We also have, however, the other

case which arises when either the angle b, or a+c, is increased by 2w, in which
case

Xa = eiq/ a, K = -wiq/N (Z0)

It is obvious in this case that it is natural to define the unbarred and barred

operators as we have done it in Eqs. (19) and (20), since the unbarred operators

then agree with the ordinary rotation operators of the single group.

In the single group CN' the multiplication table is very simple. If the

operator X merely multiplies a basis function e im * by the factor an o i m q N
and another operator Xp multiplies it by the factor e i m / , it is obvious that

the two operators operating in succession multiply it by eZ1im(pv q)/N , so that

XX =XX =X . In applying this rule, we must be careful of the fact that
we have operators for only a restricted range of subscripts, which may be taken

to be -< q < If the sum p+q lies outside this range, we are to bring it
back intg the rale by adding or subtracting integral multiples of N. But now we
see that we have a difficulty with the double group. Changing q by N, according

to Eqs. (19) and (20), will introduce an extra factor eiN ewi =-I into the
resulting function. In other words, if we add or subtract N to bring an operator
back into the allowed range, we must change from an unbarred to a barred op-
erator, or vice versa. We have, in fact,

XqN Xq(21)

This will, then, modify the multiplication table of a double group, introducing

bars in some cases of product operations, not in others. By using this rule,

we find that the multiplication table for the double group C 3, as a simple ex-

ample, in as given in Table 1.
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Table I

Multiplication Table for the Double Group C3 . The table gives the product of
the operator along the left (first factor) and that at the top (second factor).

X0  X1  X_ 1 X0 XI X_ 1

Xo X0  XI X_1  X o  X I  X. I

Xl xl x-1 Xo XI • Xl XO

X_ Xl xo Xl X 1  Xo  X1

Xo X0 Xl X-1 Xo X1  Xl

Xl Xl X-1 30 Xl X-1  Xo

X-I -1 XO XI X-1 Xo X

We note that among the products arising from two unbarred operators
there are two barred operators, namely X1 X1 = XiIX = X I . Thus we

cannot use the multiplication table for the single group without change for the
double group. We note one simplifying feature, however: the product of an
unbarred and a barred operator is the same as the product of the two corres-
ponding unbarred operators, except with a change from unbarred to barred, or
vice versa. In other words, changing from barred to unbarred operators is
like a change of sign. This means that the multiplication table for unbarred
operators, which is only a fourth as large as the complete multiplication table,
really furnishes complete information. In other words, it is no more compli-
cated to write down the multiplication table for a double group than for the
corresponding single group. We shall henceforth take advantage of this fact
in writing multiplication tables.

The double group C3 is isomorphic with the single group C6 ; according
to Eq. (Zl), we could label the barred operators X0, X 1 , X_I by the symbols
X3 X , X2 respectively, and we should then have the operators X0 , X* I ,

XQ., X3 of the single group C6 . The multiplication table of Table 1 follows at
once from that for the single group C6 . As in that case, the group is Abelian,

each operator forms a class by itself, and there are six one-dimensional
irreducible representations. Since the single group C3 has three one-dimen-
sional irreducible representations, this means that there are also three extra
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one-dimensional irreducible representations for the double group. In general,
we see that the double group CN is isomorphic with the single group CZN.

Next let us take up quite a different sort of rotation, one in which the

axis of quantization changes. Thus, let us take a cyclic permutation of axes, in

which z shifts to x, x shifts to y, y to z, so that

Rf(x, y, z) = f(y, z, x) (22)

As we compare with Eq. (7), we see that this is the case

alI = a13 = a21 = a22 = a32 = a 3 3 =0,

a 12 = a2 3 = a3 1 = 1 (23)

We may now use Eq. (12) to derive the Euler angles, and if we choose the upper

signs, we have

sin a = 1, cos a = 0

sin b = 1, cos b = 0

sin c = 0, cos c = I (24)

The solutions may be taken to be a = w/ 2, b = v/ 2, c =0. Then in Eq. (6) we

have

Ra =cos -e -iri/4 a + sin w e -i/4

4 4

_ 1-i ( + P)
2

Ra u- sin - ewi/ a + cos - eir/4
4 4

LI+i- (-a + )(s
2

Since we have rotated the z axis into the x direction, we should suppose that

the resulting spin functions denoted as 1a and 1P respectively in Eq. (25) would

represent spins pointing along the *x directions. We shall shortly show that this

is the case.

Similarly let us rotate so that z goes into y, y into x, x into z. Here

as in Eq. (23) we have all the a's equal to zero except now a 13 , a2 1, a3 2 , which

are unity. From Eq. (12) we have in this case

sin a a 0, coo a = -1

sinbu l, cosb =0

sin c = 1, cos c x 0 (26)
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from which a = -w, b = c uw/2. Then from Eq. (6) we find

R=1+1 -1+1 1+i
R -=l+, + - L-(a + ip)

2 2 2

R= -+i a + 1-= +i (a -i0) (27)
2 2 2

These functions should represent spin functions along y and -y respectively.

In choosing the value of a, from Eq. (26), we might well have hesitated as to

whether to choose -w, as we did, or w; one would have given R, the other I.

We have made the choice in such a way that this operator, and the preceding

one worked out in Eq. (25), which belong to the same class in the point group

0 h , will have the same character of unity. We shall see later that this forms
one guide as to the choice of the primed and unprimed operations.

4. Relation of Double Groups to Dirac's Electron Theory

The fundamental theory of the electron spin is of course Dirac's

theory, and the results we have been discussing must arise from that theory.

By stating the relation of our methods to those of Dirac, we can clarify the

situation. We shall follow closely the discussion of Dirac's methods given by

the present author 5 . It is well known that Dirac uses a wave function with four

components, +I' ' +3' +4" If we are dealing with an electron, 4o and +2 are

small, 43 and +4 large. The function *3 represents in a way the wave function

for electrons of + spin, or associated with the spin function a, while the

function 4 is the wave function for electrons of - spin. Thus in a way we

can write the complete wave function, in terms of spin-orbitals, in the form

+3a + 4 0. From the results of Eqs. (25) and (27), we should expect that if

+4 = 0, the spin is along z; if *3 = 0, it is along -z; if +3 = +4, it is along x;

if 43 = + +4' along -x; if +4 = i+3, along y; and if +4 = 44 3 along -y. We shall
shortly show in an independent way that this is true.

If *53 and +4 are proportional to the same functions of x, y, z, then

their ratio will remain fixed over all space, and this means that the spin orien-

tation will be the same everywhere. If on the other hand we wish to represent

a situation in which the spin orientation varies from point to point, 43 and +4

must be different functions of x, y, and z. Such a situation arises in case we

are dealing with spin waves in which the spin orientation varies in a helical

manner as we pass through a crystal. We shall not have to deal with that situa-

tion in the present note.

In Ref. 5, Section 23-6, it is shown that the x, y, and z components

of spin at a given point of space are proportional to
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Sy T34 + 43

5 = *3+3 " +4 (28)

If t3 and +4 are normalized so that I* 43 + *4*4 = 1, the quantities of Eq. (28)

are the components of unit vector in the direction of the spin. Thus if +3 = 1,

+14 = 0, corresponding to a zero coefficient for the Pauli function t, we see from

Eq. (28) that s z = 1, s x =sy = 0. Similarly if+3 = 0 . 4 = 1, z = -1. If 43 =

*4 = 1/4Z, sx = 1, y = sz = 0, while if s3 = -"4 = 1/%T7, s x = -1. Again, if

*4 = i'3' Sy = -1. These are the cases considered in Eqs. (25) and (27). The

fact that the wave functions in those cases differ from those considered here by

being multiplied by a complex constant of magnitude unity makes no difference in

Eq. (28).

In other words, we can check the rotated wave functions of Eqs. (25)

and (27) and show that the spins in fact point in the directions we expect. It is

easy by using the same methods to set up a linear combination of a and P repre-

senting a spin pointing in any arbitrary direction. Thus, let s x . Sy, s z , which

are three components of a unit vector, have arbitrary values. Since
33 + +4+4 = 1, we see from Eq. (28) that

Sz= 33 -(1 - *33) - 21*3- 1

4343 = (1+8)/2 (29)

Now let 4/43 = a+bi, where a and b are real. Then from Eq. (28) we have

ox = * 43 (a+bi+a-bi) = 2aP3*3 = a(l+Sz)

so that s
a = (30)

1+s z

Similarly we have

y 4 3 (-ia+b+ia+b) = 2b* 3 + 3

b = - (31)
1+8 Z
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We thus know the absolute magnitude of 413 and the ratio 444/ 43. This is as

much as we can find from s x , Sy, s z . If in particular we choose 0/3 to be real,

we have

8z =  = (32)
12 qJz(lT_82 )

These formulas will be useful in our future work, to allow us to set up wave

functions corresponding to spins pointing in arbitrary directions.

So far we have been considering the rotations and their effect on the

spin functions a and 3. We also have operations including reflections, or in-

versions. It is most convenient to write each such operation as the product of

an inversion and a rotation. Since we have found how to handle a rotation, we

need only investigate in addition the effect of an inversion on the spin functions.

The answer is very simple: an inversion leaves the functions invariant. The

reason for this can be seen easily from the discussion we have just been giving.

Suppose we are dealing with a central-field problem, as a simple example.

Then both of the functions 0/3 and + 4 will be either even or odd on inversion. The

inversion operation then will not change the expressions of Eq. (28), and hence

will not affect the spin. This is not a proof, but it suggests the correctness of

the result, which can be proved rigorously in general. Hence we can show that

the effect of any operation involving both an inversion and a rotation on the spin

functions a and P is identical with that of the rotation alone. This gives us all

the information we need to discuss the double groups completely.

5. The Double Groups CNv

We are now ready to proceed with some actual cases, and shall first

consider the general double group CNv, and in particular the examples of

C 2 v, C3v, and C 4 v' The single group has not only the operations Xq, defined

in Eq. (14), which are met in the group CN , but also the operations Yq, defined

by

Yq (4) = 4(- + !3) (33)
q N

or in rectangular coordinates

Yq P(x, y, z) fP(x cos q + y sin -wq, x sin-Lrq Ycos-, z)
N N N N

(34)

This is an improper rotation, consisting of a rotation and an inversion. If we

denote the corresponding rotation alone as Y , we have
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yV'(x, y, z) = 4(-x cos Y sin 2q0 x sin 2q + -z)
N N N N

(35)

which corresponds to
all - cos 3 a =0a ~ -I I Co-79 sin 2-9_, a 13 = 0

N N

a 2 1  a 1 2 , a 2 2 -al 1 , a 2 3 = 0

a 3 1 =a 3 2 = 0,a = - 1 (36)

We have an example of Case 2 of Eq. (13), leading to b = r, cos 29q cos (a-c),

sin 2_.q =- sin (a-c), so that a-c z -2irq/N. Then from Eq. (6) w have
N

Y 'a = e~r i q / N P , Y;P = -e -.ffiq/ N a(37)

qq

In Eq. (37), coupled with Eq. (19), we have the statement of the effect of the

operations of the group on the functions a and P. We have a relation

Yq N = 'Yq (38)

analogous to Eq. (21).

We shall now use Eqs.(19), (21), (37), and (38) to give the effect of

the operators Xq and Yq on a and P, for the groups C2v, C3v, and C4v; we

remember that since the inversion does not affect the spin functions, the effect

of Y is the same as that of Y'. We shall present these results in the form ofq q
matrix elements:

Ra = RI1 a + R 2 13, R3 = R1 2a + R 22 (39)

where R is one of the operators, and RlI, etc., are the matrix elements of

the operator. We give the results for the three groups in question in Table 2.

We notice that each of the operators of the group, acting on the two

basis functions a and P, produces a linear combination of these two functions.

Thus they form basis functions for an irreducible representation of the group.

Each double group has such a two-dimensional irreducible representation, for

which the two spin functions are basis functions, just as each single group has

a totally symmetrical one-dimensional irreducible representation in which the

basis function is unchanged under each of the operations of the group. We note

that in Table 2 we have given the matrix elements only for the unbarred opera-

tors of the double groups; the matrix elements for a barred operator are the

negatives of those for the corresponding unbarred operator.
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Table 2

Matrix elements of the two-dimensional irreducible representations of the

double groups C 2 , C3 , C4 v, using a and P as basis functions. The matrix

elements for the barred operators are the negatives of those for the unbarred

operators.

C 2 v

XO XI YO YI

11 1 1 0 0

21 0 0 1 i

12 0 0 -1 i

22 1 -i 0 0

X 2 0 0 0

C3v  X 0  X I  Xy IO Y I Y- 1

11 1 e i/3 e-ri/3 0 0 0

21 0 0 0 1 e fi/3 e-iri/3

12 0 0 0 -1 -e -Ti/3 -e wi/3

22 1 e- i/3 ei/3 0 0 0

X 1 0 0 0

C4 v

Xo X I X x 2  y 0  Y Y- 1  y 2

11 1 ewi 4 ewi/4 0 0 0 0

21 0 0 0 0 1 ei/4 e-wi/4

12 0 0 0 0 -1 -e -i/ 4 -e f /I~ ~~_i 4 0 .- i/ e/

22 1 e-wi/4 eWi/4 -i 0 0 0 0

X 2 0 0 0 0 0
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It is convenient next to set up multiplication tables for the groups.

This is done in Table 3.

Table 3

Multiplication tables for the double groups C2v' C 3v, and C4 v. The tables

give the product of the operator along the left (first factor) and that at the top

(second factor). For the product of one unbarred and one barred operator,

barred and unbarred operators are to be interchanged in the products. The

products of two barred operators are identical with those of two unbarred

operators.

C2 v

X0 Xl Y0 YI

X 0  X 0  X I YO Y I

X1  X1  XO YI y

YO YO YI XO XEI
YI Y1 YO X0 X0

y y X X 1 yy

C3 v x iy

x X0 Xl 0 Y 0 Y-

X 0  X 0  I X 1 Y0 I Y-0
xl xl x-l Xo Y-i Y0 Y-

Y O Y O I X0 X I Y 0

y0 Y YI Y0 X-1  X X-

Y-1 Y-1 YO Y I X-1 O
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Table 3 (continued)

C 4 v

X X X- X Y Y Y- Y

0 1 1 2 0 1 -

x0 Xo xI x-I x 2  Y0  YI Y-1 Y2

xI xl x2  x0  X-1  Y-1  Y0  Y YI

x-1  x- x0  X2 x1 Y1 Y2 Y0 Y-I

x2  X2  x-I xl XO Y2 Y-1 Y Yo0

Y0 Yo YI Y-I YZ X0 x l X_ x2

Y1 Y1 Y2 Y0 Y-1 X-I X0 x X1

Y-1 Y-I Y0 Y2 YI XI X2 X0 X-1

YY Y2 y- 'Y0 Xz XI X1 Xo

It is simple to set up these tables, using the information which we already have.
Thus, for example, let us consider the case of C2v. From Table 2 we know

that

Xa = ia, Y a = P, YIa =ip, X1 0 =-iY 0 P = -0, YlPa ia (40)

Then for instance we have X1X~a . Xl(is) = -a = X0 a, as indicated in the table.

We can verify this by computing the effect of XIX 1 on P. We have

X X P = XH(-iP) = -P = X0 . Similar methods suffice to find each entry in the

tables. As we have mentioned in the discussion of the group CN in Section 3, it

is only necessary to tabulate the products of unbarred operators in presenting

the multiplication table, since putting a bar on an operator changes the product

operator from barred to unbarred, or vice versa.

Once we have the multiplication table, we can find the classes ofI-1
operations. We recall that if R is the inverse operator to Ri , all operators

-__RlRIRi fall in the same class with Rj. By proceeding in this way, we find
the following classes in the cases we are using as illustrations:
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C~v: five classes: Xo; X0 ; X, and X1 ; YO and Yo; YI and Y,

C3v: six classes: XO; X X1 and Xl; X1 and X_ ; YO' V1' and I;

To Y1 , and Y-l

C4v: seven classes: X0; X0; X I and X 1; X I and X_1; X 2 and X2;

Y0' YZI Vol and Y2; Yl' Y-I' Til andY- " (41)

In contrast to this, for the single groups we have the following classes:

C 2v: four classes: X0 , X1 Y0' and Y1

C3v: three classes: X0 ; X1 and Xl; Y0 ' Y1 and Y-I

C4v: five classes: X 0 ; X1 and X. 1 ; X2 ; Y0 and Y2 ; YI and Y_ (42)

We can now use this information to deduce the number of extra irre-

ducible representations for each of the double groups. We recall that the num-

ber of irreducible representations for any group equals the number of classes,

and the sum of the squares of the dimensionalities of the irreducible represen-

tations equals the number of operators in the group. Thus for the single group

C2v we have four one-dimensional irreducible representations; for the single

group of C3v we have two one-dimensional and one two-dimensional irreducible

representation; for the single group of C 4v we have four one-dimensional and

one two-dimensional irreducible representation. For the double group C 2v we

have five irreducible representations, namely the four found for the single

group, and an extra two-dimensional irreducible representation. For the

double group C 3v we have six irreducible representations, namely the three

found for the single group, and two extra one-dimensional and one extra two-

dimensional irreducible representations. For the double group C4v we have

seven irreducible representations, namely the five found for the single group,

and two extra two-dimensional irreducible representations. We shall now pro-

ceed to find basis functions and matrix elements for these extra representations.

We have pointed out that we already have basis functions for one extra
two-dimensional irreducible representation in each case, namely the functions

a and P, and we have tabulated the matrix elements in Table 2. For C 2 v' this

is the only extra irreducible representation. For C3 v, we must have two extra

one-dimensional irreducible representation, and for C4v an additional extra

two-dimensional irreducible representation. We must now look at the problem

more physically, to see how to set up basis functions for these extra represen-

tations, and hence to find the matrix elements.
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The two functions a and 0 of course correspond to components

MS a l/ 2 of spin angular momentum along the axis. It seems rather obvious

that if we are looking for further basis functions, we should build up functions

corresponding to angular momentum 3/ 2, or if necessary even greater half-

integral values. Let us explore this possibility, using first the case C3 v as

an example. We know that the functions of coordinates e and e- corres-

pond to ML = *1 respectively. If we then set up functions ei+a and e'iP, we

should expect that they would correspond to total angular momentum along the

axis, or M, of *3/2 respectively. Let us then try these as basis functions.

To find the effect of one of the operators on one of these functions. we must

know its effect both on the function of coordinates, and on the function of spin.

We have already investigated the effect on the spin. As for the coordinates,

we have

Xqe 4 =e 2wiq/N e *i+

=*j *Ziriq/ N eTi (43)Yqe i =e (4e

Let us call our two functions e1 e i ' a and qF, = e - i O P respectively,

and let us examine the effect of the operators of the double group of C3v on

them. We have

XI+ 1 =e 2li/3 ei ei/3a = - ei a -O

X1 4o2 = 4Fz, X-l* = "41. X-Iq+ = 4/

Y 041 = +z Y O4z = -Fl' Y1'F1 = "OI1 Y1 +,z = O/'

Y-I+1 = "40 2 Y-I+Z = 'F1 (44)

The effects of the barred operators on the functions +1 and +s2 are the negatives

of those of the unbarred operators. We see, then, that 401 and *2 form basis

functions for a two-dimensional representation of the double group C 3v' This

is however a reducible representation. If we take new basis functions

o± I *,, we find that each of these combinations forms a basis function for

a one-dimensional irreducible representation. These then are the two extra

one-dimensional irreducible representations which we are seeking, for C 3 v.

The matrix elements are given in Table 4.

Though we have found two one-dimensional irreducible representa-

tions, nevertheless we can prove that on account of time reversal they must

be degenerate with each other, so that as far as energy is concerned, the
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Table 4

Matrix elements and characters for the extra irreducible representations of

the double group C3v. The representations are labelled as for the group of

the wave vector along the 111 axis, in the representations of the double space

groups for a cubic crystal. Basis functions for A4 and A5 are 1i± N 2 , where
*1 = e i o 2 = e'i, * being the angle of rotation about the axis. Basis

functions for A 6 are a, P, where in each case the spin is quantized along the

axis. Note according to Section 6 of the text that for use with the cubic space

groups, we must interchange the definitions of the operators Y0 and V 0 so that

the matrix elements of Y0 will take on the negatives of the values given in the

table, which agrees with Eq. (37). Matrix elements for barred operators are

the negatives of those tabulated.

X0 X1 X-1 Y0 Y1 Y-I

A4  1 -1 -1 -i i i

A5  1 -1 -1 1 -i -i

(A6 )I 1  1 e i /3 e - i /3 0 0 0

(A6 )2 1  0 0 0 1 ev i / 3  e " i / 3

(A6 ) 12  0 0 0 -1 -e-fi/3 -ewi/3

-,ff 1/3 iri/3
(A6 ) 2 2  1 e " i / 3 e 0 0 0

x (A6  2 1 1 0 0 0

situation is no different from what it would have been with a two-dimensional
representation. This is natural; we can see no reason why wave functions cor-

responding to M = 3/2 or -3/2 should have different energies, in the absence

of an external field. Wigner 6 has shown that there is a simple test as to
whether additional degeneracy is introduced by time-reversal or not. One must

construct the sum

2" (R)X (R 2 (45)

where we are summing over the operators R of a group, R2 is the square of the
operator in question, which can be found from the multiplication table, and we

are to sum the characters of these squared operators, for the representation
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in question. It can be shown that this sum must take one of three values; 1,

0, or -g, where g is the number of operators in the group. In either of the

first two cases, where the sum is g or 0, a new degeneracy will be introduced

by spin reversal, if we are dealing with extra representations of the double

group; in the third case it will not.

Let us apply this test in the present case. For C3v we have twelve

operators, X 0 , X&I, Y 0, Yl , and the corresponding barred operators. From

the multiplication table, Table 3, we find that

Z 0 2 =T X2 =X1Y2 Z 2 2 (6X0 =x o  X1  .-, 1  X 0 1 1  X0

The squares of the barred operators equal the squares of the corresponding

unbarred operators. Now from Table 4 we know that for the first one-dimen-

sional irreducible extra representations of C3v the character of X0 is 1, and

of X I it is -1. We do not require the characters of the Y's. The characters

of the barred operators are the negatives of those of the unbarred operators.

The sum of Eq. (45) is now

2[X(X 0 ) + X(X. 1) + X(XI) + 3X(X 0 )] = 2(1 + 1 + I - 3) = 0 (47)

Since this sum is zero, an extra degeneracy is introduced by time reversal,
which in this case is the degeneracy between the two one-dimensional extra

representations of C 3v* Just for reassurance, we may apply the same test to

the two-dimensional irreducible representation of C3 v, which according to

Table 2 has characters given by X (X0 ) = 2, X (Xi ) n x (X l ) 1, other chara-

ters being zero. Hence the sum in this case is 2(2 - 1 - 1 - 6) = -12, or -g,

so that no additional degeneracy is introduced by time reversal with this repre-

sentation, which of course is correct.

Now let us take up the case of C 4 v* We recall that there must be

another two-dimensional irreducible representation, in addition to that given

in Table 3. We naturally try the same two basis functions 40 = e'+, and

+2 = e- +p here which we have used for C 3 v* By methods similar to those al-

ready used, we find the matrix elements given in Table. 5. This representation

is irreducible, as it is expected to be.

6. Cubic Double Groups

We shall illustrate our methods further by taking two of the cubic

double groups, namely Td and Oh . These can conveniently be treated together,

since the operations of Oh are merely those of Td' and in addition those of Td

plus an inversion. Since the inversion has no effect on the spin functions, we

can get complete information about the effect of the operations on the spin

functions from the double group Td. The single group has 24 operations,



26. BASIS FUNCTIONS FOR THE DOUBLE POINT GROUPS

Table 5

Matrix elements and characters for the extra irreducible representations of
the double group C4 v. The representations are labelled as for the group of the

wave vector along the 001 axis, in the representations of the double space

groups for a cubic crystal. Basis functions for A . a and P, and for A,
6 7

eiOa and e'P, where € is the angle of rotation about the axis, and a and P are

quantized with respect to this axis. Note as for C 3 v, in Table 4, that for use

with the cubic space groups we must change the signs of the matrix elements

for Y Matrix elements for barred operators are the negatives of those tab-

ulated.

X0 X1 X-I X2  Y0  Y 1  Y2

(A6)11 1 e wi/4 e-iti /4 i 0 0 0 0
(A 6)21 0 0 0 0 1 effi / 4  e - wi / 4  i

(A6)12 0 0 0 0 -1 -e - wi/4 -ei/4 i

(A6 ) 2 2  1 e - r i/4 eiri/4 -i 0 0 0 0

X (A6 ) 2 47 a 0 0 0 0 0

1 - e -i 0 0 0 0

(A7 ) 2 1  0 0 0 0 1 -e -wi/4 _ewi/4 -i

(A7 ) 1 2  0 0 0 0 -1 evi/4 e-i/4 ie -i-ii/

(A7 )2 2  1 -e i 4  -e "wi / 4  i 0 0 0 0

X (A 7) 2 -4 -41 0 0 0 0 0

R . . R 2 4 , defined on p. 9, QPR No. 47, January 15, 1963. The double
group has of course 48 operations, the 24 of the single group plus the barred

operations. Our first task is to find the effect of the 24 operations of the

single group on the spin functions a and .
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To carry this out, we use the same methods which we have sketched
previously. The operations R 1 . ' . R12 are rotations, while R1 3 . . ' R24

are rotations plus inversions, so that R' 3 . . . R' 4 , which consist of the

original operations plus an inversion, are pure rotations, which together with

R I " R1 2 comprise the operations of the group 0. For each of these it is

easy to find the angles a, b, c, from Eqs. (11), (12), and (13), and hence to

find the transformations of a and P by Eq. (6). For instance, we have

R2 f(x,y, z) = f(x,-y, -z), so that a 1 1 = 1, a 2 2 ff a3 3 " -1, all other a's vanishing.

This is an example of Case 2, Eq. (13), leading to cos (a-c) = -1, sin (a-c) = 0,

from which a-c = f, as well as b = ft. It proves more convenient, for reasons

which we shall mention later, to take one of these signs to be +, the other -.

In either such case we have

R = iP, R2P = ia (48)

Again, we have R 5 f(x, y, z) = f(y, z, x), and R9f(x, y, z) = f(z, x,y) = f(z, x,y).

We have already discussed these two cases in Eqs. (25) and (27). As still

another example, we have R, 3f(x, y, z) = f(x, -z, y), from which a1 1 = 1,

a2 3 =-1, a3 2 = 1. These lead according to Eq. (12) to sin a= -1, cos a = 0,

sinb = 1, cos b = 0, sin c a 1, cos c = 0, from which we may assume

a =-/, b = c =7r/2. These lead to

R' 3a =--L (a+ip)

R l (ia+3P (49)

These examples are enough to show how we derive the matrix elements for the

operations acting on the basis functions a and P, which are tabulated in Table 6.

This table is appropriate both for the double groups Td and 0 h' In the latter

case we have the 24 operations R1 . . . R2 4 , the primed operations R • R'4

(each equal to the unprimed operation plus an inversion), and the 48 barred

operations associated with these. Going from an unprimed to a primed opera-

tion makes no change in the matrix elements; going from an unbarred to a

barred operation changes the sign of the matrix elements.

From this table of the effect of the operations on the basis functions

a and P., we can proceed to find the multiplication table for the double groups

Td h using the same methods described in the preceding section. This
multiplication table is given in Table 7. We give the table for the 24 operations

R1 . . . R2 4 . If one of the factors is primed, the product operation is primed;

if both are primed, the product is unprimed. If one of the factors is barred,

the product changes from unbarred to barred or vice versa. If both factors

are barred, the product is as given in the table.
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Table 7

Multiplication table for the double group Td. Table gives product operation Rk or lL of R1 (on left) and R_
(at top). RiRj - Rh. For the product of one unbarred and one barred operator, barred and unbarred opera-

tors are to be interchanged in the products. The products of two barred operators are identical with those

of two unbarred operators.

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Z1 22 23 24
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ZO 21 22 23 24

2 2 T 1 3 7 8 I W TZ I 10 9 T1" 13 2T 27 7 23 20 T9 15 16 T9 17

3 3 4 T 7 8 7 6 3 T 9 TZ 11 M 19 T" is 2 1 T I 13 22 77 17 18

4 4 T 2 T 6 S 1 7 T 12 9 T f TV W 77 21 1f 17 13 14 T 15 Z4

5 S 8 6 7 11 12 10 11 1 - 1 18 24 14 20 16 Z 73 17 TV 1 2T IM

6 6 7 S I 11 Tf 12 9 4 1 3 1 17 3 7 14 21 15 21 18 TT 19 16 22

7 7 1 8 1 12 9 TT 10 2 3 1 4 23 17 13 T7 77 16 18 24 2ff 14 TT 21
8 8 3 7 6 10 11 9 TZ 3 2 1 1 4 18 19 13 15 2T T7 23 14 20 77 16

9 9 T T 10 1 3 4 2 3 7 8 6 Z 15 2R 17 2 13 T 16 73 18 TV 14

10 10 TZ 11 9 3 1 2 1 8 5 7 2T 16 18 23 13 20 22 TI 17 24 1 TV

11 11 9 Tf 12 1 T 1 3 6 8 7 5 15 22 23 18 14 19 "1 2T 24 17 13 20

12 12 10 9 1 7 4 3 5 7 5 6 1 16 21 17 24 T 14 15 22 TIF 23 20 77

13 13 T 19 2 16 15 2Z 73 2A 23 18 17 2 1 8 7 9 10 1 3 6 5 TT 12
14 14 13 2f TV 22 21 16 15 17 18 23 24 1 7 6 5 12 11 3 .4 11 7 10 1I
15 15 T7 21 18 73 17 1f4 13 19 14 9 4 3 1 6 8 TZ 10 'Z 1 7 7

16 16 7"7 15 7 24 17 23 18 13 Z0 14 TV 10 12 1 1 7 S 11 31 4 1 W 1

17 17 23 2 1I 14 2 T7 13 ZZ 16 15 21 7 6 9 12 4 1 8 5 T 11 3 7
18 18 6 "4 7 17 20 14 13 19 15 2T 22 16 8 5 11 10 1 "13 12 23

19 19 T 14 ZT 22 15 TV 3 24 "1 18 3 7 8 11 TZ T 2 5 S 9 10
2020 19 14 13 T 16 7T 22 18 7 24 23 1 5 T 10 V "Z 7 1 TZ M

21 21 16 7Z TS 2 TI 24 17 T9 14 7f T 12 TV 4 7 1 6 9 11 T 3 5 7

22 22 15 21 16 T 24 18 23 14 19 1M 20 11 Z 1 5 7 N1 TZ I T 8
23 23 17 18 21 TV 13 14 20 T5 1 16 27 W 7 10 1T 2 3 5 1 9 12 T 4

24 24 18 17 23 13 TV 20 14 16 22 Z TI 5 1 12 3 3 Z 6 7 17 T X 1
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In setting up the matrix elements of Table 6, which result in the multi-

plication table of Table 7, we have a choice of sign with each operation; as

mentioned earlier, we can call a given operation either R or R. We have chosen

the signs so as to get the closest connection possible with the results for CNv

given previously. In the first place, we can carry out a cyclic permutation of

variables, changing x into y, y into z, z into x. We must expect that we shall

get the same form for the matrix elements under these circumstances, if at

the same time we change the basis functions properly, going from a and A, which

point along z, to the corresponding functions pointing along x, and then to those

pointing along y. From Section 4 we know how to set up those basis functions.

Our choices are made so that the matrix elements are unchanged by this type

of transformation.

Next, we know that the group 0 h has several subgroups of the form of

C Nv We have tried as far as possible to arrange the definitions of the opera-
tions to agree with our earlier treatment of those groups. A complete agree-

ment however is impossible, as we shall now show. First we have a two-fold

rotation about the axis x = y, or alternatively about the z axis. In these two

cases we have the following parallelism between operations of 0 h , as we have

described them, and the operations of the double group C zv:

Axis x = y: RI-0X 0 , R24-- X1 , RI-.Y0 , R2 3 -Y 1

z axis: R -OX0 , R4-. X I , R-.Y0 , RI-Y I  (50)

We may then take out of Table 7 the part relating to these operations, rename

the operators according to Eq. (50), and set up a multiplication table just for

these operators. This table is given in Table 8; it is identical for either of the

cases given in Eq. (50). We should expect it to be identical with the multipli-

cation table for C 2v' When we compare with that multiplication table, in Table 3,

we see that there are a number of cases where there is disagreement between

barred and unbarred operators. This disagreement would all be removed if in

Table 3 we had renamed the operator Y0 , so that the operator which was called

Y0 in that table was called Y 0 instead. Alternatively we could have renamed the
corresponding operator R or R3 in Table 7, calling them 14 or I respectively.
The latter procedure is impossible, however, for there is an inherent relation

between the operations R., R3 , R4 , demanded by the cyclic permutation

symmetry of the problem, and if we were to change the definition of R3 and RI

we should have to change R, as well. Since they are all concerned in the second

case of Eq. (50), we are not allowed to tamper with them. Hence the only way

to keep consistency between the group 0 h and C 2 v is to change Y0 in C2 v* As far

as R. , R3 , R4 are concerned, they are fixed. This was the reason for choosing
the definition of R2 as was described in Eq. (48).
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Table 8

Multiplication table for operators X 0 , X1 , Y0 , Y1 of double group C2v, assuming

identification of Eq. (50) with operators of group Td# and using multiplication
table of Table 7 for Td.

X0 X1 Y0 YI

X 0  X 0  XI Y0 Y I

Xl Xl XO YI Y0

Y0 Y0 Y 1 30 Xl

YI YI Y0 X1 10

In a similar way we get parallelism between certain subgroups of Oh
and C3v and C 4v Thus we have the relations given in Eq. (51):

For C,3v

RI-.X 0 , R9-X 1 , R 5-X_I

Rz 3 -YO R 2 1 Y1 , R1 9 -Y. -

For C4v

I -- 7o Xl, '8-X-1- R,4-X

Rf. Y0 , R2 3-*Yl , R2 4 .'bY I, R2..Yz (51)

Here again we can set up multiplication tables for the groups C3v and C4v

respectively out of the results of Table 7. Again there are certain discrepancies

between Tables 7 and 3, and again they can be removed if we define Y0 for the

groups C3v and C4v oppositely to what we have done. That is, in place of

Y a =P, Y P = -a, as given in Eq. (37), we must choose Y a-, Y0 P Z a.
On the other hand, we must continue to use Eq. (37) for all other values of q,

aside from q = 0. The author is unable to say whether there is a deeper meaning

in the fact that this change in the definition of Y0 brings agreement between the

various cases, or whether it is an accident. As we well know, there is no

fundamental consideration determining whether a given operation is to be defined

as barred or unbarred.

We have now determined the multiplication table for the groups Td and

0 h , and can next find the classes of operators in each case. We proceed as be-

fore, and find the following results:
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Group Td
Single group has five classes: RI; R 2, R3 , R4 ; R5  . . R 12 ; RI 3 .

R1 9 . . . R2 4 . Consequently it has five irreducible representations, two one-
dimensional, one two-dimensional, two three-dimensional.

Double group has eight classes: RI; 1; R2 , R3 , R 4 ,R 2 ,'R 3 ,' 4 ; R5 . " RI2;
"5  * ' ' '12; R1 3 . " . R1 8 ; 'R 1 3  " " 118; R1 ' " " R2 4 ' 'R19 . . . 24"
Consequently it has eight irreducible representations, consisting of those for
the single group, two extra two-dimensional representations, and one four-

dimensional.

Group 0 h

Both for the single and double groups we have twice as many classes, and twice
as many irreducible representations of each dimensionality, as for Td. The
additional representations found in Oh and not in Td differ from those in that

for each representation of Td, we have two for Oh , one having the same matrix
elements for each operator R I as for the corresponding operator R, the other

having a matrix elcment for RI which is the negative of that for R.

Our problem is then to find basis functions, and matrix elements, for
the two extra two-dimensional representations of Td, and the extra four-
dimensional representation. For Oh we need only produce the additional basis

functions describing the property of being even or odd on inversion. We shall
carry this out in the next section.

7. Basis Functions and Irreducible Representations for the Double Groups Td

and 0
The first of the extra two-dimensional irreducible representations of

Td is already given in Table 6. It uses the basis functions a and P. We note
that though we are dealing with cubic symmetry, we are using the z axis as a

preferred axis, the axis of quantization of the functions a and P. We could,
however, quantize along x or y equally well. If we use the basis functions of
Eq. (25) we have quantization along x, and if we use those of Eq. (27) we have

quantization along y. The matrix elements have the same form as in Table 6,
except that the names of the operators are interchanged in a way which can be
predicted from the cyclic permutation. In studying space groups and wave
vectors in crystals, it is often convenient in such a case to take the axis of

quantization along the reduced wave vector of the wave. Thus, if we are con-

sidering propagation along the x axis, rather than s, we may choose the basis
functions of Eq. (25).
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In addition to this two-dimensional irreducible representation, we
must find another two-dimensional, and a four-dimensional irreducible repre-

sentation. We can get at these representations by setting up basis functions
according to a physical argument. The cubic symmetry comes by a pertur-
bation of spherical symmetry. The two-dimensional representation using n

and 0 as basis functions arises from an S function in a central field problem.

When we combine a function of coordinates which is independent of angles, with
the spin function, we are proceeding as if to build up the as1/2 wave functions
for M = * 1/2, in a central field problem. We naturally look for further basis

functions by considering atomic functions of p symmetry, which will not be
split in a cubic field. We know that an atomic p function, without spin, has
three components, corresponding to ML = 1, 0, -1. When we couple this with
a spin, with Ms = * 1/2, we can get M = 3/2 and 1/2 by coupling the spin to

ML = 1, M = 1/2 and -1/2 from ML = 0, and M = - 1/2 and - 3/2 from ML = -1.

We know that if spin-orbit interaction is introduced into the atomic problem, we
shall have two energy levels, 2 P3 / 2, with M = 3/2, 1/2, -1/2, and -3/2, and
2Pi/Z' with M = 1/2, -1/ 2. It seems reasonable to suppose that the cubic field
will not remove this degeneracy, and that the four-dimensional irreducible repre-

sentation of Td will correspond to the 2 P3/ 2 atomic state, and the additional
two-dimensional representation to 2 PI/ 2 . Let us then use this hint to try to set

up basis functions and hence the matrix elements of the irreducible representa-
tions.

Let us start with the 2P 3/ 2 . We can set up the basis functions corres-
ponding to M = 3/2, -3/2, as in the earlier cases of Csv and C4v, by combining

the spin Q with an orbital function corresponding to an orbital angular momentum
of 1 unit along the z axis, and combining P with an orbital function with angular
momentum -1. Since we are taking the z axis as the axis of quantization, an

orbital p function with angular momentum 1 along the axis has a wave function

x+iy times a function of r, and that with an angular momentum -1 has a wave/ function x-iy times the function of r. Hence for the basis functions correspond-

ing to M = 3/2 and -3/2 we may reasonably expect to use (x+iy)a and (x-iy)P.
These are entirely analogous to the functions *I and o2 of Eq. (44). We next
need functions corresponding to M = 1/2 and -1/2. We can find these by using

atomic vector-coupling methods, coupling the orbital angular momentum of

unity with the spin angular momentum of 1/2 unit. When we do so, we not only
find the functions corresponding to 2 P3/ 2 for M a 1/2, but also the functions

for 2 P1/ 2 " We find the following basis functions:
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Basis functions for 2P3/2

'tp, M = 3/2: (x+iy)a

qj' M = 1/Z: za .x+iy

tF3 , M =1- /2: z + x-iy a
2

%P4 ' M -3/2: (x-iy)P

Basis functions for 2P 1/ 2

'FI M= 1/2: za +(x+iy)

%P2 , M = - 1/2: -zP + (x-iy)a (52)

We can now use these functions and investigate the operations of the

double group Td on them. We find that they form in fact basis functions for a

four-dimensional and an additional two-dimensional irreducible representation,

and we find matrix elements as given in Table 9. The basis functions of Eq. (52)

are odd on inversion. Hence if we use them to form basis functions for

irreducible representations of 0 h, the matrix elements and characters for the

primed operations are the negatives of those for the unprimed operations. We

must find as well basis functions for the other irreducible representations of

0 h which will be even on inversion. We must also find basis functions for the

two-dimensional irreducible representation of 0 h which has the same matrix

elements as that of Table 6 but which is odd on inversion. When we do so, we

have the following complete set of basis functions for the extra irreducible

representations of the double group of 0 h' together with the notations used by

Koster for these representations:

r6: a,P

r+ xya + (yz+ixz)P, -xyP + (yz-xz) a

r+: (yz+ixz)a, xya - yz+ixz P, xyP + yZ-ixz a, (yz-ixz) P
8 2 2

r6: za + (x+iy) P, -zP +(x-ly)a

r;: xyza, xyzP

r: (x+iy)a, za - x+iy P, zP + x-iy a, (x-iy)p (53)
2 2
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We see that the basis functions of Eq. (52) are those for 1s and r6 respectively.

8. Double Point Groups and Double Space Groups

It is not the intention of this note to go thoroughly into the treatment of

double space groups. However, we have gone far enough with the double point

groups so that the reader should have no trouble reading the literature on the

double space groups, or in extending the methods described here to that problem.

We shall indicate in this section some of the simpler aspects of the problem.

We shall illustrate by a familiar example, the splitting of the three-fold degenerate

p-like state at the point r in the body- or face-centered cubic structures, by

spin-orbit interaction.

It is obvious in the first place how to set up the operations of the double

space groups. We combine the translations with the double point groups of

operations. Both an operator R and IT will have identical effects on a function of

coordinates, but their effects on the spin functions a and P are identical with what

we have found in this note. Hence if we have a function of coordinates and spin,

made up as we have indicated here by multiplying a function of coordinates and a

spin function, we can find the effect of any operator of the space group on this

function. We can set up the multiplication table of the double space group, as

we have done for the double point group in this note, and for the single space

groups in earlier contributions to the Quarterly Progress Reports. We can then

deduce the irreducible representations, using simple basis functions suggested

by the single groups, and can find their matrix elements.

Once we have found the irreducible representations and their matrix

elements, we can set up basis functions by the method of projection operators.

In particular, if we are dealing with a crystal problem, we naturally start with

a plane wave multiplied by a spin function a or P, and apply the projection opera-
X ) tor technique to this function. The result will be a symmetrized plane wave,

combined with a suitably symmetrized spin function. If the matrix elements of

the irreducible representations are set up like those using the basis functions of

Cv when that group forms the group of the wave vector, the spin function a-
rising from the projection operator will ordinarily be quantized along the reduced

wave vector. We can illustrate this by a simple example. We have seen in

Eq. (51) that there is a parallelism between the operators X0 , X 1 , X- 1 , Y0 Yl'

Y-1 of the group C3v, and the operators R I , R9 , R 5, R2 3, R 2 1 , R1 9 of the group

Oh or Td. These operators form the group of the wave vector along the direction

A, the 111 direction in the cubic crystal. If we use the matrix elements for C3 v

given in Table 2 (changing the sign of the matrix elements of Y0 according to

Section 6), and form projection operators from these matrix elements, using the

two-dimensional irreducible representation of C 3 v' and allow these projection

operators to operate on a, we find that the resulting two basis functions produced
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by the projection operators point along the 111 and -111 directions, as deter-
mined by the methods of Section 4. Similar results are found in other cases.

From the character tables of the irreducible representations of the

groups of the wave vectors in the various directions, we can deduce the com-

patibility relations in the usual way. Let us now consider in detail the situa-

tion at r in a cubic crystal, and in the directions A, A, and 2: along the 100,

111, and 110 directions respectively. We have seen in Eq. (53) a set of basis

functions for the point r in a cubic crystal. The representation r6, as we see

from this, is the one resembling the S1/2 state in an atom; its basis functions

are the spin functions a and P, the orbital part of the function being totally

symmetric. We have noted that we have a similar two-dimensional irreducible

representation for every double group, and for the directions A and A these

representations are called A 6 and A 6 respectively, which are obviously com-

patible with r 6 .

In addition to this two-dimensional irreducible representation of the

groups C4v and C3 v, met in A and A respectively, we recall that for C4v we

have another two-dimensional irreducible representation, with basis functions

(provided we are taking the wave vector along z) of the form (x+iy)a, (x-iy)P.

This representation is called & V It then proves to be the case, as we can
prove from the character tables, that r+ and r- are compatible with A 6' +

+ 6 6 6'7'
and r 7 with A 7' and r and r 8 with both A6 and A7 Similarly we recall

that for C3v there are two one-dimensional irreducible representations, called

A 4 and A ., in addition to the two-dimensional representation A 6 . It then
proves to be the case that r6, r6, r 7 , and are all compatible with A 6 , while

r and r are compatible with A 4 , A5 , and A6 . Since there is only one8 84#6
irreducible representation of C2v, the group of the wave vector along Z, namely

the two-dimensional representation with basis functions a and P, this is com-

patible with all of the irreducible representations at r.

Let us now look more closely at the physical meanings of these repre-

sentations and compatibilities. An atomic S state will go in the crystalline field

into the irreducible representation r6, as we have seen, with the basis functions

a and P. This is compatible along each of the three symmetry directions in which

the basis functions again are a and 1, or two linear combinations of these. An

atomic P state on the other hand will be split into the two-dimensional irreducible

representation r and the four-dimensional r., as we can see at once from the

basis functions of Eq. (53). In our earlier discussion we have seen that the r6

is analogous to the atomic state 2 PV/V and the r- to 2P3/.. The two states

will of course be split apart by spin-orbitinteraction. Along the direction A

r will be compatible with '6 , while r will be compatible with A 6 and £7.

Since these two two-dimensional irreducible representations will have different

energies, we see that the four-dimensional ZP 3/,-like state at r will be split



BASIS FUNCTIONS FOR THE DOUBLE POINT GROUPS 39.

into two two-dimensional states along the direction A . In the direction A it will
likewise be split into two two-dimensional states: we have compatibility with

A4 , A 5 , and A6 , but we remember that the two one-dimensional irreducible
representations A4 and A5 are degenerate on account of time reversal.

In each case of these directions A and A, one of the two-dimensional
representations with which r 8 is compatible has the basis functions a and ,

and corresponds to a component of angular momentum along the reduced wave

vector A1/2. The other, however, has basis functions like (x+iy)a, (x-iy)P,

with corresponding functions for the direction. A, corresponding to components
of angular momentum along the reduced wave vector of * 3/2. The orbital
functions set up by projection operators, in the form of symmetrized plane

waves, will have the same symmetry properties as x*iy, etc., about the lattice
points. For instance, for a simple cubic lattice of spacing a, basis functions

for & 7 are

ikz 2wh x 2irhy 2r h2x 2wrhly
e [sin _____ cos *i cos sin - I (')

a a a a

where hi , h 2 are integers.

The reason, of course, for using the basis functions of the irreducible

representations of the double group is that the Hamiltonian, including spin-orbit

interaction, commutes with the operators of this double group, and consequently

there will be no non-diagonal matrix elements of the Hamiltonian, including spin-

orbit interaction, between basis functions for different irreducible represen-
tations of the double group. This fact then will be used in solving the problem

of spin-orbit interaction in solids. Suppose, for example, that we had solved
the problem of energy bands in a crystal, with neglect of spin-orbit interaction,

N> using the irreducible representations of the single group. Suppose then that we

wish to introduce the spin-orbit interaction as a perturbation. We may take the
basis functions of the irreducible representations of the single group, multiply
these by spin functions a or P, or by the appropriate spin functions pointing along

the reduced wave vector, and construct from them basis functions for the

irreducible representations of the double group.
The commonest case is the one which we have been using as an illustra-

tion, the splitting of a p-like irreducible representation of the single group by

spin-orbit interaction. From Eq. (53) it is clear how to set up basis functions

at r. The spin-orbit interaction will be diagonal with respect to these states.

When we are not far from the point F, and have small splitting between the

components of this p-like state, we may disregard non-diagonal matrix ele-

ments of the spin-orbit interaction between these components and any other

energy levels. Along the direction A, then we have seen that we shall have two
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states A6, one arising from each of the energy levels at r, and one A .
Obviously we shall have to consider the interaction between the two A6's.

There will be a non-diagonal matrix element of the spin-orbit interaction be-
tween them, proportional to the reduced wave vector, leading to a quadratic

secular equation. Similarly in the direction A, we shall have A4 , A. , and two
A 6 Is. between which we must solve a quadratic secular equation.

It is hoped that this description of some of the simpler procedures for

dealing with the double groups will give the reader enough familiarity with their

manipulation so that he can proceed to the more complicated cases often met in

practice.
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ENERGY BANDS IN NICKEL OXIDE

A. C. Switendick

I. Introduction

It has been some time since our last report on the subject of the

energy bands in nickel oxide and considerable progress has been made in the

interlude. This report will give our results to date and our conclusions re-

garding nickel oxide.

II. Preliminary Considerations

The augmented plane wave method (hereafter called the APW method)

was originally proposed by Slater . Calculations of the band structure of iron

have been made by Wood 2 using the APW method as programmed by him for

the IBM 709 computer. These computer programs have been extended to in-

clude structures containing two atoms in the unit cell, in particular for the

sodium chloride structure which non-magnetic nickel oxide possesses. There

are several considerations to be made before initiating an APW calculation.

These considerations are: (1) choice of potential, (2) choice of APW sphere

radius (within which the potential is assumed spherically symmetric),

(3) choice of the value of the constant potential assumed to exist outside the

spheres, and (4) choice of the ionicity of each of the atoms in the unit cell.

We shall consider the ionicity first. The atomic configuration of
2 26 268 2 2 2 4nickel is (Is) (2s) (Zp) (3s) (3p) (3d) (4s) and that of oxygen is (Is) (Zs) (2p)

Chemical concepts of valence would lead to the ions Ni1 and 0 , with the

outer electronic configurations of (3d)8 and (Zp) 6 respectively. Crystalline

field theory for nickel oxide gives good interpretation of experiment with the

assumption of the ground state of the nickel ion as (d ) 6(d ) 2 where

corresponds to combinations of atomic d -functions to yield localized

functions xy, xz, yz and dV to 3sz-r , and x -y . On these bases we have
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assumed the lonicities of +2 for nickel and -2 for oxygen. The APW method

requires a spherically symmetric potential within the APW sphere containing

an ion. The average of the electrostatic field from the other ions in the crystal

gives the usual Madelung potential. With the Madelung constant for the sodium

chloride structure and the lattice constant a, (nickel-nickel distance along the

cube edge of 4.1946 Angstroms compared with 3. 517 for nickel metal) and the

assumed ionicity, this potential is * 1. 76364 Rydbergs. This value is sub-

tracted from the nickel potential and added to the oxygen potential (taking

potential in the ordinary electrostatic sense for positive test charges). The

effect of the Madelung potential is to raise all the electronic energy levels

associated with the nickel ion and to lower the levels associated with the oxygen

ion. Thus the ionicity can affect the energy band structure greatly. The ionicity

remained constant in all our investigations. From the energy band results and

the band wave functions, we can test the validity of the choice of ionicity.

We next consider the choice of potential to use within the nickel sphere

and within the oxygen sphere. Watson 3' 4 has made analytic Hartree-Fock cal-
cultins orN+ 2  0-2

culations for Ni and 0 - . Potentials were constructed using these results.
1/3 5Exchange was included, using the Slater p averaged exchange potential

The potential within the nth sphere is given by

r

r ,n r O

+ p r dr' +-L lw N(w, r) (1)
r' 4w I N(r)

r n,I

P2 (r) S -V - VX -=. VM 0r

The first three terms represent the spherically averaged coulomb potential of
the nucleus and the electrons. The fourth term is the averaged exchange po-

tential where N(w, r)/ N(r) is the fraction of the electrons with spin W at position

r. Initially we shall consider non-magnetic nickel oxide and shall take this

factor to be 1/2. VM is the Madelung potential discussed above and Vo is the

potential assumed in the region between the spheres and the cell boundary. In

Table I we give the numerical potential used for non-magnetic nickel oxide.

We now discuss our choice of APW sphere radii. In preliminary in-
6 -vestigations we used the ionic radii of Pauling for oxygen Rs(O ) = 1. 40

Angstroms (2. 65 atomic units) and for nickel Rs ) a . 70 Angstroms
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Table 1

Numerical potential used to obtain energy bands for non-magnetic nickel-oxide.

Potential used is tabular value - VShift' where VShift : VM - V . For oxygen

V = -. 59636, for nickel VShif t - 2. 93092.

Oxygen Nickel Oxygen Nickel

r Potential Potential r Potential Potential

0.010 1572.57690 5409.38080 0.510 12.25670 33.77772
0.020 771.94769 2609.19739 0.520 11.81944 32.58822
0.030 504.85467 1678.90248 0.530 11.40158 31.45553
0.040 371.25884 1216.50876 0.540 11.00187 30.37616
0,050 291.12782 941.15356 0.550 10.61920 29.34694
0.060 237.76812 759.18992 0.560 10.25254 28.36493
0.070 199.72904 630.53355 0.570 9.90094 27.42744
0.080 171.27809 535.15714 0.580 9.56354 26.53199
0.090 149.22575 461.90842 0.590 9.23954 25.67627
0.100 131.65508 404.06451 0.600 8.92822 24.85814
0.110 177.34411 357.33551 0.610 8.62887 24.07561
0.120 105.47681 318.86890 0.620 8.34090 23.32682
0.130 95.48739 286.70442 0.630 8.06370 22.61005
0.140 86.97121 259.45501 0.640 7.79674 21.92366
0.150 79.63131 236.11253 0.650 7.53952 21.26612
0.160 73.24488 215.92618 0.660 7.29157 20.63602
0.170 67.64157 198.32457 0.670 7.05245 20.03199
0.180 62.68899 182.86469 0.680 6.82176 19.45277
0.190 58.28276 169.19741 0.690 6.59911 18.89717
0.200 54.33956 157.04383 0.700 6.38414 18.36404
0.210 50.79209 146.17851 0.710 6.17651 17.85234

0.220 47.58550 136.41744 0.720 5.97591 17.36103
0.230 44.67462 127.60913 0.730 5.78204 16.88918
0.240 42.02197 119.62792 0.740 5.59462 16.43586
0.250 39.59620 112.36895 0.750 5.41337 16.00023
0.260 37.37092 105.74416 0.760 5.23806 15.58148
0.270 35.32374 99.67923 0.770 5.06843 15.17882
0.280 33.43554 94.11111 0.780 4.90427 14.79152
0.290 31.68991 88.98600 0.790 4.74536 14.41889
0.300 30.07266 84.25776 0.800 4.59149 14.06028
0.310 28.57144 79.88659 0.810 4.44248 13.71504
0.320 27.17543 75.83787 0.820 4.29814 13.38259
0.330 25.87512 72,08136 0.830 4.15829 13.06236
0.340 24.66206 68.59033 0.840 4.02277 12.75381
0.350 23.52874 65.34109 0.850 3.89142 12.45641
0.360 22.46841 62.31239 0.860 3.76408 12.16970
0.370 21.47500 59.48515 0.870 3.64062 11.89320
0.380 20.54303 56.84208 0.880 3.52089 11.62647
0.390 19.66750 54.36753 0.890 3.40476 11.36908
0.400 18.84390 52.04730 0.900 3.29210 11.12065
0.410 18.06810 49.86851 0.910 3.18280 10.88078
0.420 17.33635 47.81949 0.920 3.07674 10.64911
0.430 16 64522 45.88971 0.930 2.97380 10.42530
0.440 15.99160 44.06963 0.940 2.87388 10.20902
0.450 15.37263 42.35069 0.950 2.77688 9.99995
0.460 14.78573 40.72515 0.960 2.68270 9.79779
0.470 14.22853 39.18606 0.970 2.59125 9.60226
0.480 13.69890 37.72715 0.980 2.50243 9.41308
0.490 13.19488 36.34278 0.990 2.41616 9.23000
0.500 12.71468 35.02785 1.000 2.33236 9.05276
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Table 1 (continued)

Oxygen Nickel Oxygen Nickel
r Potential Potential r Potential Potential

1.020 2.17183 8.71490 2.020 -0.53592 2.76806
1.040 2.02024 8.39773 0.040 -0.54732 2.72843
1.060 1.87703 8-09964 2.060 -0.55816 2.68985
1.080 1.74168 7.81917 2.080 -0.56845 2.65227
1.100 1.61371 7.55499 2.100 -0.57824 2.61566
1.120 1.49267 7.30588 2.120 -0.58753 2.57997
1.140 1.37814 7.07072 2.140 -0.59636 2.54518
1.160 1.26974 6.84850 2.160 -0.60474 2.51124
1.180 1.16711 6.63829 2.180 -0.61270 2.47812
1.200 1.06990 6.43924 2.200 -0.62025 2.44580
1.220 0.97781 6.25056 2.220 -0.62741 2.41424
1.240 0.89053 6.07154 2.240 -0.63421 2.38343
1.260 0.80780 5.90152 2.260 -0.64065 2.35332
1.280 0.72936 5.73990 2.280 -0.64675 2.32389
1.300 0.65497 5.58612 2.300 -0.65254 2.29513
1.320 0.58439 5.43967 2.320 -0.65802 2.26700
1.340 0.51743 5.30008 2.340 -0.66320 2.23950
1.360 0.45387 5.16691 2.360 -0.66810 2.21259
1.380 0.39355 5.03977 2.380 -0.67274 2.18626
1.400 0.33627 4.91828 2.400 -0.67712 2.16048
1.420 0.28188 4.80211 2.420 -0.68126 2.13525
1.440 0.23022 4.69092 2.440 -0.68517 2.11054
1.460 0.18114 4.58443 2.460 -0.68885 2.08634
1.480 0.13452 4.48236 2.480 -0.69232 2.06263
1.500 0.09022 4.38447 2.500 -0.69558 2.03940
1.520 0.04811 4.29050 2.520 -0.69865 2.01663
1.540 0.00810 4.20025 2.540 -0.70154 1.99431
1.560 -0.02995 4.11351 2.560 -0.70425 1.97243
1.580 -0.06611 4.03009 2.580 -0.70678 1.95097
1.600 -0.10049 3.94981 2.600 -0.70916 1.92993
1.620 -0.13319 3.87250 2.620 -0.71138 1.90928
1.640 -0.16428 3.79801 2.640 -0.71345 1.88903
1.660 -0.19385 3.72619 2.660 -0.71537 1.86915
1.680 -0.22197 3.65690 2.680 -0.71716 1.84965
1.700 -0.24872 3.59003 2.700 -0.71883 1.83050
1.720 -0.27416 3.52543 2.720 -0.72036 1.81171
1.740 -0.29836 3.46302 2.740 -0.72178 1.79326
1.760 -0.32138 3.40267 2.760 -0.72308 1.77514
1.780 -0.34327 3.34429 2.780 -0.72427 1.75734
1.800 -0.36410 3.28779 2.800 -0.72536 1.73986
1.820 -0.38392 3.23307 2.820 -0.72634 1.72269
1.840 -0.40277 3.18006 2.840 -0. 72723 1.70583
1.860 -0.42070 3.12868 2.860 -0.72803 1.68925
1.880 -0.43776 3.07884 2.880 -0.72874 1.67297
1.900 -0.45398 3.03049 2.900 -0.72937 1.65696
1.920 -0.46941 2.98355 2.920 -0.72991 1.64123
1.940 -0.48408 2.93797 2.940 -0.73037 1.62577
1.960 -0.49804 2.89369 2.960 -0.73076 1.61057
1.980 -0.51131 2.85064 2.980 -0.73108 1.59563
2.000 -0.52392 2.80878 3.000 -0.73133 1.58094

i
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Table 1 (continued)

Starting Values for Oxygen Potential

I P1 (. 01) P, (. 02)

0- 0. 92278780E-02 0. 17018180E-01
1 0. 96070194E-04 0. 36911326E-03
2 0. 97333996E-06 0. 75739295E-05
3 0. 97965897E-08 0.15339523E-06
4 0. 98345038E-10 0. 30909043E-08
5 0.98597797E-12 0.62124747E-10
6 0.98778339E-14 0.12468757E-11
7 0. 98913746E-16 0.25003229E-13
8 0. 99019060E-18 0.50108679E-15
9 0. 99103313E-20 0. 10038090E-16

10 0. 99172246E-ZZ 0.20102945E-18
11 0. 99229688E-24 0. 40250494E-20
12 0. 99278297E-26 0. 80576476E-22

Starting Values for Nickel Potential

I P (.01) P, (.02)

0 0. 74742711E-02 0. 10867903E-01
1 0. 86935680E-04 0.30231151E-03
2 0. 91000002E-06 0.66125865E-05
3 0. 93032162E-08 0. 13791529E-06
4 0.94251457E-10 0.28262685E-08
5 0. 95064321E-12 0. 57431540E-10
6 0. 95644937E-14 0.11615760E-11
7 0. 96080398E-16 0. 23425700E-13
8 0. 96419090E-18 0. 47153457E-15
9 0. 96690043E-20 0. 94790202E-l 7

10 0. 96911733E-22 0. 19037124E-18
11 0. 97096471E-24 0. 38206054E-20
12 0. 97252791E-26 0. 76635164E-Z2

........ . .- - t-

SM L ,, . -. .3 - A 6 M IA A .6 4
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I
-

Figure 1. Electronic potential of Table I along 1, 0, 0 direction. Dashed curves
data of Table 1, solid curves include VSit
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(1.32 a.u.). These values give R (0 2) + R s(Ni + 2 ) 2.10 1 a/2. This result
is not surprising since these ionic radii were based on the choice of a some-

what arbitrary oxygen radius and the cation radius derived from the appropriate

oxide. Convergence of the band states associated with the nickel ion was poor

using this choice of sphere radii. We believe that this poor convergence was

engendered by the large negative value of the logarithmic derivative at the

nickel sphere radius. In order to obtain a solution to Schrodinger's equation

with continuous derivative on the surface of the APW sphere, it is necessary

to include many plane waves (outside the spheres) with short wavelengths

(large wave vector) to achieve this continuity of derivative. Slater 7 observed

that Pauling's ionic radii were somewhat arbitrary and that an equally con-

sistent set of ionic radii could be derived by subtracting a constant from all

cation radii and adding this constant to all anion radii. If this constant was

chosen such that the sphere radii coincided with a minimum of the combined

charge density, then a more physical interpretation of a sphere radius is ob-

tained. The new values of sphere radii obtained in this manner were

R s (0 2 ) = 2.1357 a.u. and R (Ni+2) = 1.8278 a.u. Since any renormalization
of the electronic wave functions would change the radial density and hence the

sphere radii, we did not renormalize. This choice of sphere radii using

Watson's free ion functions corresponds to 7. 52 d-electrons in the nickel

sphere and 4. 60 p-electrons in the oxygen sphere, and leaves 1. 88 electrons

in the region outside the spheres. Since this volume, with our choice of sphere

radii, is forty-six percent of the unit cell, it does not seem unreasonable to

have this much charge in this region. Again the choice of sphere radii can be

tested against the charge distribution associated with the bands.
Finally we come to the choice of the value of the zero potential

assumed to exist everywhere outside the APW spheres. If we consider the

potential along the (1,0,0) direction as shown in Figure I , we see that there

is a discontinuity where the atoms touch. The oxygen potential at the APW
sphere radius is -. 59636 Rydbergs and the nickel potential in 3. 20636 Rydbergs.

After the Madelung correction these values are 1. 16728 and 1. 44272 Rydbergs
respectively. In the actual crystal there will be no discontinuity. We could

choose the zero potential to be the average value of the discontinuity, but

when we consider the relative size of the spheres, we see that the oxygen ion
is fifty percent Iarger than the nickel ion and will more strongly influence the

potential between the spheres. We therefore chose the value of the potential
at the oxygen sphere to be the zero of potential, or Vo = 1. 16728 Rydbergs. We

also note that for several ionic crystals no appreciable difference would be

made in choosing the zero of potential to be the value where the two ionic po-
tentials are equal in the crystal and choosing the sphere radii in this manner.

This method of choosing the sphere radii removes the potential discontinuity
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Figure 2. Energy bands for non-magnetic nickel oxide in A and Z dhircto.
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at the spheres, even though this discontinuity does not have much effect on the

bands. This concludes our di scussion of the preliminaries to an APW calcu-

lation.

I1. Non-Magnetic Nickel Oxide Band Calculation

Using the potential given in Table 1, energy band states for nickel

oxide were calculated. It was found that APW functions with k_2 < (KMAX) 2
were needed for convergence of the band states to within . 001 Rydbergs. The

values of (KMAX) 2 for the p and d-bands were 64 and 108 (in units of (w/a) )

respectively. It was necessary to include terms with I value up to twelve to

accurately calculate the matrix elements involved in the secular equation. In

Figure 2 we give the results of our energy band calculations for the directions

A and Z in the Brillouin zone 8 for the energy range -I. 2 to I. 2 Rydbergs.

We note a narrow (.05 Rydbergs) band arising from the 2s-state of oxygen,

quite narrow (. 08 Rydbergs) bands for the 3d-states of nickel, somewhat wider

(.24 Rydbergs) bands for the 2p-state of oxygen, and a wide band (. 5 Rydbergs)
from s-like states and plane waves (a plane wave band would have a width of

. 628 Rydbergs). In Figure 3 the detailed results for the energy along the

principle symmetry directions in the Brillouin zone are shown. The numerical

values from which these curves were derived are given in Table 2. Initially
we intended to calculate the energy bands for all points in the Brillouin zone on

a mesh of 1/2 (taking the distance from r' to X as 2 units). This mesh gives
256 points in the zone but for (KMAX) 2 < 108 it would involve solving large

secular equations (80 by 80) for points with only two operations in the group
of the wave vector and correspondingly larger ones for groups with only one

operation. One such point Q with two representations Q+ and Q- was calculated.
This involved evaluating a 74 by 74 determinant (for which special programs

had to be written) for each representation and took about an hour of computer

(IBM 709) time each. For this reason we limited ourselves to a few points of

high symmetry in the Brillouin zone.

Since the bands are fairly narrow, the interpolation scheme of
Slater and Koster 9 might be successful in fitting and extending our band

structure results to general points in the Brillouin zone. This scheme should
ideally work in the case of narrow bands derived from localized atomic wave

functions. We therefore investigated the charge density associated with the

APW wave functions at the same time as we applied the interpolation scheme.

The philosophy of the LCAO scheme is to include only those parameters

(interactions) which are necessary to fit the points calculated by a more

accurate method such as our APW calculation. One hopes that the number of

parameters is smaller than the number of points to be fitted, for the fitting

to have any Justification.
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Table 2

Non-Magnetic Nickel Oxide Energy Band States

We give the value of t (t) calculated by the APW method. Also given are the

values calculated by the LCAO fit. The units of k are M where a = 7.92704 a. u.

2s Band (KMAX2 - 80)

4k Symmetry APW Energy (Rydbergs)

0,00 rl -1.1165
0,2,0 &1 -1.1055
0.4,0 &1 -1.0807
0,6.0 Al -1.0594
0,8,0 Xl -1.0517

2,2,0 11 -1.096

4.4.0 El -1.06
6,6,0 Ki -1.048

Plane Wave Band (KMAX 80)

4k Symmetry APW Energy (Rydbergs)

0,0,0 ri .6249

0,4,0 Al .8346
0,8,0 Xl 1.0977

2,2,0 r1 .72

4,4,0 El .965
6,6,0 Ki 1.182
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d Bands (KMAX =108)

4k Symmetry APW Energy Fitted Energy

0,010 ri2 -. 2278 -. 2278

0,2,0 Al -. 2436 -. 2423

0,4.0 Al -. 2614 -. Z576

0,6,0 Al -. 2375 -. 2350

0,8,0 xi -1961 -. 1961

0,2,0 A2 -. 2259 -. 2263

0,4,0 A2 -. 2226 -. 2227

0,6,0 A2 -. 2190 -. 2191

0,8,0 X2 -. 2176 -. 2176

0,0,0 r 2s t  -. 2360 -. 2360

0,2,0 A21 -. 2380 -. 2383

0,4,0 A2' -. 2438 -. 2438

0,6,0 A2' -. 2494 -. 2494

0,8,0 X3 -. 2517 -. 2517

0,2,0 AS -. 2341 -. 2343

0.4,0 As -. 2274 -. 2279

0,6,0 AS -. 2176 -. 2174

0,8,0 X5 -. 2114 -. 2114

2.2,0 E1 -. 2240 -. 2244

4.4,0 11 -. 2142 -. 2151

6,6,0 KI -. 2096 -. 2099

2,2,0 El -. 2480 -. 2447

4.4,0 El-.2667 -. 2635

6.6.0 KI -.2555 -. 2540

212,0 z2 Z.311 -. 2320

4,4,0 12 -. 2222 -. 2228

6,6,0 K2 -. 2134 -. 2146

2,2,0 Z3 -. 2400 -. 2411

4,4,0 Z3 -. 2450 -. 2454

6,6.0 K3 -. 2306 -. 2312
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4k Symmetry APW Energy Fitted Energy

2,210 X4 -. 2485 -. 2471

4,4,0 Z4 -. 2670 -. 2635

6,6,0 K4 -. 2446 -. 2436

2,8,0 Zi -. 237 -. 2351
zi -. 201 -. 2003

Z3 -. 2245 -. 2246

Z4 -,2500 -. 2500

Z2 -. 2111 -. 2114

4,8,0 Wi -. 2012 -. 2015

W21 -. 2547 -. 2530

W3 -. 2422 -. 2421

W2 -. 2105 -. 2114

6.8,2 Q+-.216 -. 2173
Q+-. 254 -. 2547

Q--.213 -. 2166

Q--. 257 -. 2560

Q--. 267 -. 2657

2,2.2 ki -. 2493 -. 2497

X3-.2525 -. 2515

X3-. 2260 -. 2260

4, 4,4 LZ' -. 2795 -. 2823

L31 -. 2734 -. 2715

1,31 -. 2162 -. 2174
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p Bands (KMAX 2= 80)

4k Symmetry APW Energy Fitted Energy

010,0 ri5 .1017 .1017

0,2,0 Al .0878 .0935

0,4,0 Al.0432 .0541

0,6,0 A -. 0275 -. 0233

0,8,0 X4' -. 0849 -. 0849

0,2.0 A5 .09655 .0953

0.4,0 A5 .07905 .0775

0,6,0 A5 .0570 .0556

0,8.0 X5l .0449 .0449

2,2,0 E1 .0447 .0538

4,4.0 z1 .0000 .0048

6,6,0 KI .0162 .0197

2,2,0 X3 .0903 .0878

4,4,0 13 .0432 .0396

6,6,o K3 -. 0355 -. 0366

2,Z,0 Z4 .1317 .1281

4.4,0 Z4 .1473 .1421

6,6,0 K4 .0943 .0917

2,8.0 Z3 -. 0577 -. 0585

Zi .0632 .0667

Z4 .02967 .0301

4,8,0 W2' .07817 .0587

W3 -. 0121 -. 0095

6,8.2 Q+.0738 .0732

Q--.0285 -. 0398

Q-.125 .1216

2.2,2 xi .0068 .0133
X3.1295 .1243

4,4,4 LZ' -. 0455 -. 0563

1.31 .1521 1447
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One could try to fit the d-bands separately and the p-bands separately, but from
the shapes of the bands for Al and 14 it is clear that p-d interactions are

required. Following the procedure of including only those interactions re-

quired to fit all the APW points to within reasonable accuracy, we obtained the

parameters given in Table 3. With these fifteen parameters we were able to
fit 93 energy levels to within five percent of the band widths. The fitted levels

are also given in Table 2. The so-called two-center approximation wherein

the fitting parameters obey certain relationshiph was not found to be quantitatively

true for the d-bands, but since in this approximation rz and r25, are degene-

rate, we do not even have a one-center approximation. (A two-center approxi-

mation in which one has different d-functions for the two states at k=O might

indeed be true). Using the fitted bands a density of states was calculated and

is shown in Figure 4. The dotted lines indicate the filling of the bands for

one electron of each spin per unit cell. Our fitting would indicate the lower

band is predominately d-like localized on the nickel and the upper band is

predominately p-like localized on the oxygen. Filling these bands with the

fourteen electrons in the unit cell, ten (five spin up and five spin down) would

fill the lower d-band making neutral nickel and four (two spin up and two spin

down) would partially fill the upper p-band making neutral oxygen. Thus we

have obtained metallic nickel oxide with an ionicity at variance with our initial

assumptions.

To verify that our APW bands do arise from fairly localized charge

densities, we investigated the amount of charge density associated with each

angular component in each APW sphere and the amount in the plane waves

outside the spheres. From the APW solutions we can write
2

p. w+ ~n
n=1

where w. is the charge associated with the plane waves outside the spheres,

and Q , a is the charge in the nth sphere for the representation a of the wave
vector I. These terms are the result of integrating the APW solutions over

the unit cell. Thus

A w=y Pp. dr outside spheres

a P k. a d-.n inside nth sphere
n n n
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Table 3

Parameters Used to Fit APW Bands

The numberical values used to fit the APW band states, shown in Figure 3,
and given in Table 2, are given. The formulas for the matrix elements are

given by Slater and Koster in Table 11 of reference 9. The connection between
2-2 2 2

their parameters and ours is I xy, 2-*xz, 3 yz, 4-*x -y 5 53z -r
6-.x, 7-y, 8-'z.

Parameter Value

Ell(000) -. 227625
El1(110) -. 00405625
Ell(011) .00098125

ES5(000) -. 212087S
E55(l 10) .000034375
E44(1 10) -. 002653125

E66(000) . 02665
E66(011) -.0045625

E66(110) .0116625

E61(010) .021

E85(001) . 05509975

E12(011) .0012
E15(110) -. 001425

E67(l 10) .0160
E61 (I11) -. 000787031

E64(11 1) 0.0
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We can write

1. ((- Im 1)! (Z+) , pt Il (coo 6) e "i' *

\((r~l Im' flj m' f (CBeim*

If we normalize the total charge distribution to one in the unit cell, we can
write

k,, a
Qk~ Q;.~ IQrPG

p.w p.w

and p2 u(rr)rP{r) ---
Qal

Then
Qp.W+I 4nicl

n, I

where k i- 1- P2, (r ) dr dQ

sphere

We have evaluated and Q for various direction in the Brillouin zone
and show these results in Figures 9 through 7. In Figure 5 the amount of
oxygen Zp-charge density in the d-bands along Al varies smoothly from zero

percent at riz and X1 to sixteen percent inside the zone. However, the
percentage of 3d-charge density in the Zp-bands is not so smooth and there is

a sizable amount of plane wave in this function. These results manifest them-
selves in that the FIZ-AI-XI states could be fitted very accurately (in fact

with quantitative agreement for the wave function) with a simple p-d inter-
action. This same interaction gave poor fit to the p-bands ri s-&I-X4'.
Similarly the p-bands could be fitted quite well by a simple p-d interaction
(of different magnitude) but the errors were not consistently too high or too

low and this fitting gave bad results for the d-bands. The APW wave functions
confirm the existence of a p-d interaction which we assumed in order to fit
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the APW bands. Similar but less dramatic results were found for the symmetry

A5 shown in Figure 6. Finally in Figure 7 we show that the oxygen Zs-band is

mostly Zs-function with about ten percent plane wave being needed to give conti-

nuity of the slope outside the APW sphere. Also in Figure 7 we show the compo-

sition of the conduction band which is about half plane wave like and various other

distributions as allowed by the symmetry. In Figures 8-10 we show the radial

densities associated with the 2s, 3d, and Zp bands. For the 2s-function of Figure 8

the APW function is more contracted than the Zs function of Watson giving three

percent more charge inside the sphere, but in quite good agreement with our

starting assumption. The 3d-function of r25' and r'12 shown in Figure 9 is also

in good agreement with Watson's d-function from which our potential was derived.

Again the function is more contracted with a few percent more charge in the

sphere although this varies according to Figures 5 and 6 as we leave k=0. Finally

in Figure 10 we show the radial function P 2_compared with Watson's function.

This time the function is considerably contracted with an increase of twenty per-

cent of an electron inside the sphere for the state r15. This again decreases

according to Figures 5 and 6 as we go away from k=0. From Figures 5-10 we

conclude that our choice of potential and sphere radius are reasonably consistent

but our assumed ionicity of &2 turns out to be A0. In the next section we discuss

this discrepancy.

The result of our APW energy band calculation for non-magnetic nickel

oxide is summarized in Figures 3 and 4. We conclude that filling the lower d-band

with ten electrons per cell and partially filling the upper p-band with four electrons

per cell gave a charge distribution corresponding to neutral nickel and neutral

oxygen at variance with our assumption of Ni+Z and 0-2. This band structure

also gives metallic properties. If we were to do a self-consistent calculation
with potentials constructed from our band functions and no Madelung correction,

then the new p and d-bands would be separated by three Rydbergs and should be

even more localized yielding neutral nickel and neutral oxygen.

IV. Discussion of Non-Magnetic Results and Extension to Antiferromagnetic
Structure

In order to obtain the correct ionicity of Ni+ 2 and 02, it vuld be
necessary to raise two electrons per cell from the d-bands to fill the p-bands.

This would still give metallic behavior because of the partially filled d-bands,

but would give the correct ionicity. The filling of higher levels in preference to

lower ones is similar to the case of atomic nickel (3d)S(4s) 2 where the one-electron

3d-energy is -1. 3736 Rydbergs and the one-electron 4s-energy is -. 5422 Ryd-

bergs. Yet the 3d level is not completely filled, it being more favorable to allow

the 3d-electrons to align their spins to gain "exchange energy" and to fill the

higher 4-states. Callaway 10 gives an expression for the change in the atomic

Hartree-Fock potential when one electron reverses its spin as
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I [F 2 (3d, 3d) + F 4 (3d, 3d)]

7

Using the integrals evaluated by Watson for nickel (3d) 8 we obtain

! [.565 + . 909] . 21 Rydbergs
7

From the fact that this is about three times the d-band width, we conclude

that the magnetic effects are sufficient to split the d-bands into two bands,

one for spin up and one for spin down. The separation of these bands being

the order of one half a Rydberg. The antiferromagnetic structure of nickel oxide

corresponds to two net spins on each nickel site. This antiferromagnetic

structure has an Ndel temperature of 500°K which corresponds to an energy

of. 0033 Rydbergs. We would therefore expect the antiferromagnetic band

structure to consist of two sets of bands, one set for spin up and the other set

for spin down (separated by about . 50 Rydbergs) with modifications of each

set by splittings of the order of . 0033 Rydbergs because of antiferromagnetic

effects. Also crystalline field theory would lead us to believe the d-band is

split into two sub bands with a gap of about . 08 Rydbergs. Barring a complete

band structure calculation for antiferromagnetic nickel oxide (face-centered

cubic with eight oxygen ions and four spin up nickel ions and four spin down

nickel ions in the unit cell), we consider two band structure calculations:

one for spin up and the other' for spin down (corresponding in some sense to

ferromagnetic nickel oxide). Before making such a calculation it seemed wise

to compare the location of our bands with the free ion levels in the crystal in

order to determine the appropriateness of the p 1/3 exchange potential.

Callawayl 1 and others have indicated that the use of the free electron
1/3or p potential may be in error for 3d-bands. The error is in the direction

of lowering the 3d-bands and in fact may have erroneously put our d-band below

the p-bands (as the results of Mtin1 2 would indicate). To investigate the
1/3reasonableness of the p potential we compare the one electron energies for

the 2s, 2p, states of oxygen and the 3d states of nickel in the crystal in Table 4.

We give the one electron energies from Watson's atomic Hartree-Fock calcu-

lations, atomic p1/3 calculations and the APW band levels at k = 0. All levels

are quoted relative to the APW zero of energy. From this table we see that

the pl/3 potential is fairly good for the 2p states but is in error by at least .30

Rydbergs for d-functions. We also conclude that the d-level does not shift

appreciably in going from the ion into the crystal and the p-level may be con-

sidered not to shift but to be broadened by +. 14 and -. 09 Rydbergs. We see

that the error in location of our APW d-bands is due primarily to the use of

the p1/3 approximation for 3d-states.
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Table 4

Comparison of eigenvalues for various states in Atomic p1/3 potential APW

calculation and Hartree-Fock calculation.

State Atomic p1/3 APW (r) Watson(Shifted)

+2

NI z 3d -. 21460*. 00004 -. 2319 i.0041 .10483

0 2 2p .0098 *.0050 .1017 -.02

O 2 2s -1.0512 *.0005 -1.118 -1.408

We have checked that the error in the 3d bands is primarily due to
the use of the free electron exchange potential by first order perturbation

theory using Watson's atomic functions and atomic potentials

-[< 3dlv IF. I 3d>- <3d IVAt (Pl/3)13d>]
(2)

= -[3.44-3.73] =.29

which is to be compared with the APW error

£(3d)At -E(r5
f ) = . 10+. 23 = .33

One could correct for the error in the 3d potential by the use of a screening
factor 1 3 , but this would induce errors in any magnetic effects calculated using

this potential. We have found that first order perturbation theory gives very

good results for the shift of the APW state at k = 0 with a change of potential

AV, i. e.

t(V -(V) I<3d v 13d> (3)
k=0

Using equation (1) to calculate a spin dependent potential corresponding to 2. 4

spin down electrons (. 6 p 3 ) we obtained states at k z 0 of -. 0171 * .0054

Rydbergs, a shift of . 2148 Rydbergs. The perturbation calculation gave a shift
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of .2154 Rydbergs. This corresponds to .135 Rydbergs per spin flip com-
pared with the atomic estimate of . 21 Rydbergs. Thus, any screening of the

exchange potential (by an exponential-like factor) although improving the non-
magnetic energy level location would give poor results for magnetic effects.

We have made various calculations using potentials of the form

1

Vexchg = X g (P )
Vexchg(X 4

The energy band levels at k = 0 are again very well given by the expression (3)
(see Table 5). We have also made APW band calculations for nickel oxide using

Table 5

Change in APW eigenvalues for k = 0 compared with expectation value of change

in potential using atomic 3d functions up to sphere radius.

c( ro-c(r), I

(Rydbergs) -A = (1-X)<3d IV(p 13d> (Rydbergs)

1.0 0.0 0.0

.929 -.28 -.27

.867 -.52 -.50

the exchange potential of Eq. (4) with )m. 867. The bands were fitted quite
well using the old parameters changing only the location of the states at

k=0. If we assume the location of the 3d states at k=0 to be given by the

Hartree-Fock one-electron energies (as a more appropriate Ni++ potential
would give) and the riz-rZ5' separation to be given by extrapolation from
various APW calculations and use the same parameters as obtained for our

fitted bands, we obtain the non-magnetic band structure shown in Figures 11- 12.
Now that the d-bands are above the p-bands, the p-d interaction acts to split
the d-bands and prevents the p-bands from rising above k=0. These bands

+Z -2
are now consistent with Ni and 0 7 The non-magnetic Fermi level is also

shown. These bands however predict metallic behavior. If the riz-r2zs
splitting is taken as 1.06 ev .08 Hydbergs, as crystalline field theory would

indicate, the upper band would still be half full giving metallic behavior.
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Figure 11. Energy bands for non-majn~etic oxide calculated using Hartree -Fock
one-electron energies toloc =ater15, r25' and r12, and the fitting
parameters of Table 3.
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When we consider the splitting of the d-bands by magnetic effects

leading to spin up and spin down bands, we obtain the results shown in

Figure 13. These results are both consistent with Ni + 2 and 0 - 2 and,

including the crystalline field splitting at k=O, gives full d-bands with a gap

of . 05 Rydbergs. Thus we believe that the insulating properties of nickel

oxide are due to the splitting of the d-bands by the different potentials seen by

a spin up or spin down electron at every nickel site and the crystalline field

splitting of the uppermost d-band into d and d sub-bands. To visualize the

result of the antiferromagnetic structure, we would consider the potential seen

by a spin up electron at the eight nickel ions in the cell (twice as big in every

direction). To first order this would give a structure like Figure 13.

where each d-band now corresponds to four bands. The lower set of four

corresponds to the 3d up electron located on an up site and the upper set of

four bands to the 3d up electron located on the down sites. The reverse picture

would hold for a spin down electron on the down sites. Filling the spin up(down)

bands with half the electrons in the cell (since there are as many up as down in

the cell) would give 5 spin ups (downs) on each up (down) site and 3 spin ups

(downs) on each down (up) site. The splitting of the states of the same symmetry

probably would be of the order of . 0033 Rydbergs and would not remove the

gap between the d and d states. This is about as far as we care to speculate

barring a more accurate energy band calculation which should include a more

accurate 3d potential (probably of the Hartree-Fock type), crystal field effects

of non-spherical, non-constant potential at least outside the spheres and the

correct antiferromagnetic structure.
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SCF CALCULATIONS ON NEON, USING GAUSSIAN FUNCTIONS

M. C. Harrison

In order to get some idea of the possible accuracy of wavefunctions
using Gaussian orbitals, a series of calculations on the ground state of the

Neon atom has been completed, using between 9 and 24 basic Gaussians. The
restriction that Gaussians of the same symmetry should have exponents in

geometric progression so that adjacent functions would have equal overlap,

was retained from previous calculations 1 . Thus the exponents for a particular
symmetry (s or p in this case) could be specified by two parameters P and c,

which will be taken to be the exponent of the center Gaussian, and the ratio be-

tween adjacent exponents.

The results for the 41 calculations are given in Table I. Atomic units
are used throughout. The s f nctions are of the form e , and the p func-

tions of the form f(xy, z) e , where f(x, yz) is x, y, or z. The energy

converges fairly slowly towards the Hartree-Fock energy of -128. 547 calcula-

ted by Clementi 2 with a basis of two ls, three 2s, and four independent 2p

Slater orbitals.
To give some idea of how critical the choice of parameters is for the

various sized bases, an energy surface of the form

E = E + P(P-o )2 + Q(c-c )
0 0 0

was fitted by five points for each pseudo-optimisation. The assumption of

independence of P and c implicit in the parabolic fit should be noted as an
approximation, as should the assumption of independence of s and p

optimisation. It is thought that these assumptions may be justified in view of

the present crude optimisation procedure. The results are given in Table 11,

and show fairly systematic behavior of the parameters. The only anomalous
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result seems to be that the choice of c for 3 p functions is as critical as for 2 p

functions. PP2 Qcz
0 0 hc ereet hTable lIII tabulates the values "1""0 and -T---w hihrpeet h

change in E calculated from the energy surface, when the parameters P and c

respectively are in error by 10 percent. These figures show the expected

result that neither P or c are very critical except for the very small bases, and

Ppo' Qcz
that c is more critical than P. If the product of and 0 is taken as a

somewhat arbitrary measure of the criticalness of the set, then the resulting

order of the sets is 3s(.012), 2p(.001 6 ), 5s(.0013), 3p(.00029), 7s(.00012),

9s(. 000026), 5p(. 0000072). This suggests that balanced sets would consist

of 5s and 2p functions, or 7s and 3p functions, or 9s and 4p functions, a result

which seems consistent with calculated total energies.
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SCF CALCULATIONS OF HYDROGEN FLUORIDE, USING

GAUSSIAN FUNCTIONS

M. C. Harrison

Calculations on the ground state of HF are reported for three bases,

each at three internuclear distances near the experimental equilibrium

distance of 1. 7328 a. u. The bases were chosen to stress the importance of

the outer shells (seel), the fluorine functions comprising 9s and Sp for basis I,

5s and 3p for basis II, and 3s and 2p for basis III. In each case 3 s functions

were used for the hydrogen, with a pa function added for basis I. The expo-

nents for the fluorine were chosen by approximately scaling the exponents used

in Neon calculations 25, 26, and 36, reported separately . The scale factor

was determined by the Slater rules for exponentials, as suggested by Reeves 2

Thus, to transform Ne exponents to F exponents, the factor for Is should be

8 and for 2s and 2p should be (8}Z These are both close to 0.8, which

was in fact used. The actual exponents are given in Table 1.

The total energies, orbital energies, and dipole moments for the nine

calculations are given in Table 2, with the same results for calculations by

Clementi3 and Ransil 4 . Atomic units are used throughout. Clementi estimates

that his total energy is within .005 of the true Hartree-Fock energy, so com-

parison with his results will be taken as an indication of accuracy. It is seen

that the energies for calculations I1, II, I, at 1. 75, converge monotomically

to Clementi's. If we assume that this rather surprising result suggests that

in this context the accuracy of the orbital energy provides an indication of the

accuracy of the orbital, it is seen that Ransil's minimal Slater basis is inferior

to basis II except for Ia and total energy, and is superior to basis III except

for Iw. These conclusions are consistent with previous indications I that

balanced atomic bases should have 9s + 4p, or 7s + 3p, or 5S + Zp functions,

and also with the closeness of Ransil's total energy with that of basis II.
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Parabolic interpolation gives equilibrium internuclear distances of

1. 74 for bases I and II, identical with the values obtained by Clementi and

Ransil. The inability of basis III to give an equilibrium distance in the correct

range would seem to indicate some serious deficiency in the wavefunction.
Further evidence is necessary to determine just what this is, but comparison

of orbital energies with Ransil's values suggest that the inner shells are

responsible. *

The values obtained for dipole moments are rather discouraging.
Again there is monatomic variation, but to a value which is too high. However,

it may be that the addition of PH and dF oibitals, as used by Clementi, would

effect the improvement. It should be noted that the SCF procedure was termi-

nated when the total energy agreed to within . 00001 in all cases, resulting in

about 3 significant figures in the density matrix. It is not clear how accurate

a dipole moment can be calculated from such a density matrix, but considera-

tion of the values for different internuclear distances suggests that at least one

or two figures are significant.
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It is seen that the occupied orbital energies increase monotomically with

increasing internuclear distance with the exception of I, with qualitative

agreement of the variation for the three bases.
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Table 1

Exponents used for bases I, 11, III

Basis SF PF SH PH

1 .35,1.1,11,35,110, .27,. 92, 3.2, .1483,. 6577,4. 2392 1.0

350,1100,3500 11.0,38.0

II .72, 3.6,18, 90,450 .48,2.4,12.0

III 1.25,10.0,80.0 .64,3.84

Table 2

Total and orbital energies and dipole moments

Basis Clementi Ransil I II III

Internuclear 1.7328 1.7328 1.75 1.75 1.75
distance

Total -100.05754 -99.53614 -100.01785 -99.40371 -95.34717
energy

lw -26. 30617 -26. 26612 -26. 2749 -26. 1094 -24. 8935

2. -1.61068 -1.48860 -1.5934 -1.5427 -1.3234

3" -0.77459 -0.60558 -0.7502 -0.7012 -0.5901

lw -0.65786 -0.46863 -0.6365 -0.5963 -0.4751

4" -- 0.66916 0.1835 0.2567 0.4201

2w -- -- 0.9433 2.2879 3.8714

Dipole 0.78 0.57 0.9239 0.8836 0.6200
moment
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Table 2 (continued)

Basis I II III II Il

Inter- 1.65 1.65 1.65 1.85 1.85 1.85

nuclear
distance

Total -100.01512 -99.39937 -95.36483 -100.01404 -99.40163 -95.32455

energy

i0 -26. 2739 -26. 1201 -24.9112 -26. 2748 -26. 1076 -24. 8835

2a- -1.6150 -1.5686 -1.3645 -1.5750 -1.5227 -1.2896

3- -0.7707 -0.7233 -0.6083 -0.7298 -0.6821 -0.5742

lw -0.6418 -0.6053 -0.4858 -0.6314 -0. 5907 -0.4680

4w 0.1966 0.2723 0.4305 0.1690 0.2391 0.4041

2w 0. 9409 2. 2804 3. 8598 0. 9457 2. 2922 3. 8785

Dipole 0.8937 0.8672 0.6333 0.9544 0.8990 0.6033
moment
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GAUSSIAN ORBITAL EXPONENTS

M. C. Harrison
I. G. Csizmadia

The results of a systematic method for choosing orbitai exponents

for Gaussian functions is given below. The method is similar to that proposed

by Reeves I and consists of the assumption that, given optimum exponents for

one free atom, optimum exponents for another free atom can be obtained by

rescaling the set by a factor which is derived from the Slater rules for

exponentials. A slight difficulty arises in that for a Gaussian basis, no dis-

tinction is made between Is and Zs functions, and so it is desirable that a

single scale factor should be used for this set. The scale factors given by the

Slater rules are different for Is and 2s, so a mean value is used. We restrict

consideration to neutral atoms from carbon to neon, for which the Slater rules

can be written

(a) Is exponent Z- 0.3

(b) 2s, 2p exponents . 325 (Z-1)

Thus to scale Gaussian exponents from Z 1 to Z 2 , the factors should be

(Z.--- ~for I s, and for 2s and 2p. Modifying these somewhat,

we propose that

(I) the scale factor for Is and Zs Gaussians should be

I{f(z 2-.3)2z2)Z}

(II) the scale factor for Zp Gaussians should be

(Z_ 1) 2

1
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Using these rules, and assuming the optimum values for Neon 2 . we ob-
tain the values given in Tables 1 and 2. Similarly, Tables 3 and 4 show the
values derived from Nitrogen3 . It should be noted that Table 4 contains values
for a single p-function on free Nitrogen, as well as two additional entries which
correspond to the modifications found to be necessary when a single p-function
was used in NH 3 (with the Z-axis as axis of symmetry). The results may be
useful in analogous situations in other molecules.
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Table 1. Exponent values for s-functions, derived from Neon

Atom C N 0 F Ne

Factor 0.326975 0.460770 0.617540 0.797283 1.000000

0.634 0.&94 1.20 1.55 1.94

3s 5.00 7.05 9.45 12.5 15.3

39.6 55.8 74.7 96.5 121.

0.302 0.425 0.570 0.735 0.922

1.53 2.16 2.89 3.73 4.68

Ss 7.77 11.0 14.7 19.0 23.8

39.5 55.6 74.5 96.2 121.

200. 282. 378. 488. 613.

0.154 0.217 0.291 0.376 0.471

0.608 0.857 1.15 1.48 1.86

2.39 3.37 4.51 5.83 7.31

7s 9.42 13.3 17.8 23.0 28.8

37.3 52.5 70.4 90.9 114.

146. 206. 276. 356. 447.

575. 811. 1090. 1400. 1760.
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Table 2. Exponent values for p-functicns, derived from Neon

Atom C N 0 F Ne

Factor 0.308642 0.444444 0.604938 0.790123 1.000000

2p 0.252 0.363 0.494 0.646 0.817

1.48 2.13 2.90 3.79 4.80

0.178 0.257 0.350 0.457 0.578
3p 0.923 1.33 1.81 2.36 2.99

4.78 6.89 9.38 12.2 15.5

0.0994 0.143 0.195 0.254 0.322
0.346 0.498 0.678 0.885 1.12

5p 1.17 1.69 2.30 3.00 3.80

4.07 5.87 7.99 10.4 13.2

14.1 20.4 27.7 36.2 45.8

Table 3. Exponent values for s-functions, derived from Nitrogen

Atom C N 0 F Ne

Factor 0.709107 1.000000 1.340948 1.731949 2.173006

0.584 0.823 1.10 1.43 1.79

3s 4.92 6.94 9.31 12.0 15.1

4.15 58.5 78.4 101. 127.

0.311 .439 .589 .760 .954
1.55 2.19 2.93 3.79 4.75

5s 7.72 10.9 14.6 18.9 23.7
38.4 54.2 72,7 93.9 118.

191. 270. 362. 468. 587.

Table 4. Exponent values for p-functions, derived from
Nitrogen (both free and in NH 3 )

Atom C N 0 F Ne

Factor 0.694444 1.000000 1.361111 1.777778 2.250000

lp(free) 0.382 0.550 0.749 0.978 1.24

lp(x, y) 0. 694 1.00 1.36 1.78 2.25

Ip(S) 0.361 0.520 0.708 0.924 1.17
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MAGNETIC DIPOLE-DIPOLE INTEGRALS OVER GAUSSIAN

FUNCTIONS

M. C. Harrison

The two-electron integrals of the form

2 -Y

r 12

where +A is a Gaussian centered on A, can be evaluated as follows. Consider

first the integral involving just s-type Gaussians:

2 Pr 2 x 2 - r

I .ff,'QrIA' rB 1 2 Y1 2 e-Z*c-6r2 D d-ld-r
b A l

This may be written

6 2B . C 2 xf 2 2

A' B2 - e'klCE 12 "Y1 ' Lr2 F
CD 2 ---r'----- d'rld r2

r 1 2

where X =a+P, R= y+6, E = , F =
CL+p3 -Y+6

Then since 2 2

1 2  1 2  I d- 1

-5- i(d=. )(r
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d1 -tr2
and -e- t 1 dt r 0

r12  0

and writing -' AB 2 - CD2
K =e

we may write
-)r 2 d2  2  I er2) 2l

S d2  d 2  d2  -1 -tr 2  -Ir2

I e-k (lE _ t e 1 2 ) e F drldT2 dt

3W dx12 eyE 2dTd

K (e .- IE t' e-tr12) e-Rr2F d T2d

2t 2 3 _1 2
K fd e) 2E 1 t ) t7 r2F dT2 dt

3,rl x 2dY2X+t

3 _1 d2  d 2  Xt 2 2
K wL. (-ZA t (-7 -- (e 1t rZE e- 2~F )d'2 dt
6%q +t dx E dyEr2

3 1 2 t EF 2

%dx dyE d E dt

3 1 xt EF2

K t 7 4 x t 2(4  2~ e-~k+~
'!k)tZ \Mk t (XEF "YEF)e-' F

3

ILI dt
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_ t3/2 2 EFZ

K ~ F e dt wheregies

WIt
Changing variables to v = q T gives

EF z 22
2= -- X 2 'a-5/2 •V4e dv

I EF " YEFv 
--

3

& x2- y F) - E~l )

I2

where fm (z) = YvZm e-zv dv
0

The auxiliary function fm(z) is easily evaluated, and is identical to the

function which occurs in the electronic repulsion integrals, for which the basic

formula is

ZK - - fX0 EFZ4xzIL+ (I)

As shown by Boys (1950), basic formulae for s-type integrals may be
differentiated with respect to Ax , A y, A z , B . . . etc., to yield formulae for

Gaussians multiplied by powers of XlA' YlA' zIA' xlB* . etc. Note that
d

( m+l Z)"

Reference

Boys, S. F., Proc. Roy. Soc., A200, 542, 1950.
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85.

MOLECULAR INTEGRALS OVER SLATER ORBITALS

D. E. Ellis

In the last report a computer program for the computation of one and
1two center integrals over a basis set of Slater orbitals was described

Storage of auxilliary functions and the use of mixed analytic and numerical

integrations made increased speed and accuracy possible. Testing has been

completed for all combinations of s, p, and d orbitals. Separate versions of

the package are being prepared for use of real and complex orbitals.

A set of routines has been written for the three center integrals

<AB i- > , < AA IBC >, and < AB JAC >, being the one electron resonance,r

c
and the two electron coulomb and exchange integrals respectively. Final
testing is being carried out for combinations of s, p, and d orbitals. Ex-

tension to higher orbitals will require modification of the function storage

scheme, at least for the exchange integrals. Programs are being written to

rotate the three center integrals into a convenient co-ordinate system.

Reference

1. D. E. Ellis, SSMTG QPR, No. 48, April 15, 1963.
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THE Pi ELECTRONIC STRUCTURE OF THE BENZENE

MOLECULE

J. W. Moskowitz
M. P. Barnett

1. Introduction

An understanding of the electronic structure of the benzene molecule

is of central importance to much of theoretical organic chemistry. For

this reason, and because certain formal simplifications follow from the

molecule' s symmetry, numerous theoretical calculations have been made

of the electronic structure of benzene. (1) - (7) All of these have involved
simplifying assumptions and approximations that seemed reasonable, but

recent developments in high speed computing make it possible to treat the

problem in ways that would have been prohibitively difficult in the past.

This paper presents some results that were obtained using (i) accurate

values for the three and four-centre integrals which hitherto have been

ignored or approximated, and (ii) rather more configurations than have

been used by earlier workers. The calculations can be compared most

directly with those of Parr, Craig and Ross ) (PCR) which they extend in

the two ways just mentioned. Past theoretical work on the benzene mole-

cule is reviewed briefly in Section II, and the results of the new calcula-

tions are presented and discussed in Section III.

2. Previous calculations

The benzene molecule was first treated by Goeppert-Mayer and

Sklar (1 | (GMS) as a system of six interacting Zpw electrons in the electro-

static field of the molecular core. Lykos and Parr(2 ), and McWeeny( 3 )

have discussed the separability of the sigma and pi electrons in benzene.

They conclude that an operator H. that is quantum mechanically meaning-
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ful, can be defined for the pi electrons if the sigma electrons occupy a

fully symmetric closed shell configuration. The expectation value of the

operator H. then gives the pi electron contribution to the total energy in-

cluding sigma-pi coulomb and exchange interactions. The Goeppert-Mayer

and Sklar core approximation has been used in most of the calculations of

the benzene molecule. The electrostatic potential due to this core is

derived from the three further assumptions: (i) the contributions to the

core potential that are due to the hydrogen nuclei and the electronic distri-

butions surrounding them can be neglected; (ii) the contribution to the

potential that is due to the carbon nuclei and their electronic distribution

can be approximated as the potential due to carbon atoms in their valence

states minus the charge distribution of an electron in a pi orbital; (iii) all

exchange terms with the core electrons can be neglected.

The molecular orbitals (MO' s) for the six pi electrons can be written

in the form of Bloch sums or symmetry orbitals

1

bm=NmT e erimj/3 x(j0- j/3) (1)
J3

where x.(0-.)0 is an atomic orbital at the site ~.. For m = 0, 3 the orbitals
3 3 +

are non-degenerate and for m= -1, -2 they are doubly degenerate. The

benzene molecule belongs to the point group D6h. The orbitals may be

conveniently designated a2u, blg, elg, and eZu respectively. Due to the

high symmetry of the hexagon, the MO' s are completely determined in

the LCAO approximation.

In the ground state aZu and elg are fully occupied. Goeppert-Mayer

and Sklar examined the excited states which differ in configuration from

the ground state by having one electron excited to the e2u state, leaving

a hole in the e state. The symmetries of these excited states

are iBlu, B 2u, and ' 3 El u respectively. In calculating the energies

all three and four-center molecular integrals were neglected by Goeppert-

Mayer and Sklar. The agreement with the observed positions of the singlet

levels was fairly good. The calculated values of the triplet levels, however,

were much too low.

Roothaan and Parr(4 ) extended these calculations by including estimates

for all of the multicenter molecular integrals. The result was a considerable

upward shift of the excited levels. The calculated energies of the excited

singlet levels all tend to be considerably higher than the observed energies
(5)of these states. Niira has elaborated on the calculation by taking account

of the interaction of the sigma and pi electrons. He used a set of symmetry
2-

orbitals for the sigma electrons constructed from sp -hybrid orbitals on
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the carbon atoms and the ls orbitals of the hydrogens. Niira found an

increase in the energies of all the excited states relative to the ground state.

The inclusion of this sigma-pi interaction therefore puts all the singlet-

singlet transitions much further into the ultraviolet than is observed

experimentally.

The introduction of limited configuration interaction (CI) into the cal-

culation is due to Parr, Craig, and Ross. (6) These workers include states

which differ in configuration by the excitation of either one or two electrons

from the orbitals that are occupied in the ground state. Extensive move-

ments of the levels result when the configuration interaction is included.

Shifts even occur in the relative positions of some of the levels.

The benzene molecule has been studied extensively in the alternant

molecular orbital approximation (AMO) by Lowdin, Pauncz, and de Heer. (7)

By forming suitable linear combinations of bonding and antibonding MO' s

it is possible to construct basis orbitals which are semi-localized on

alternant atomic sites so that electrons with different spin are kept apart

spatially. The energy stabilization which they found for all the states which

they considered, using this AMO method, with two variable parameters,

was more than 90 per cent of the energy stabilization which we obtain with

the CI treatment that is reported below.

3. Present calculations

A study of the excited energy levels of the benzene molecule using

the core approximation has been completed recently by the authors. This

employs a larger configuration interaction than has been used previously

for benzene, as well as an accurate computation of all multicenter inte-

grals. The formal treatment of the pi electron system is identical with that

for a hexagonal ring of hydrogen atoms. (8) When all possible configurations

arising from the six pi electrons are included, the number of possible
2 4determinantal functions is 924. The 37 orbital configurations 0 1

0 2 1 3 2.... 2432 give rise to 268 possible multiplets. Maximum use of

spin and space symmetry allows a considerable reduction in the size of the

secular equation. The one electron energies in the Goeppert-Mayer and

Sklar approximation are of the form:

Nm(Em-W p) = Hll + 21, cos(wm/ 3) + 2H1 3 cos(wmn/ 3) +H 14 (cos wm) (2)

where 6

Hpq - [(r/pq)+(pq/rr) (3)
rpqral
r- q
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(r/pq) fUr(l)X * (1) X q(l)dv (4)
p q

(pq/rs)= xx (1) Xq(l) I 12 X:(Z) Xs(Z) dr12  (5)

and Nm is a normalizing factor, W p is the energy of a Zpw-electron of

a carbon atom in its valence state, and U r(1) is the potential energy of a

neutral, spherically symmetric, rth carbon atom.

The results of the configuration interaction calculation are displayed

in Table I. The first two columns repeat the calculation of Parr, Craig,

and Ross in which one electron energies were obtained according to the GMS

core approximation, two center electron repulsion integrals were computed

accurately, and three and four-center integrals were approximated by the

method of London and Sklar. The agreement with the original hand calcula-

tion is good except for the CI calculation on the 3Biu state for which PCR

report a value of 4. 1 ev. The third column contains the result of a complete

CI calculation within the pi basis using the PCR integrals.

The calculation is repeated in columns four and five using accurate

values for the electronic interaction integrals. The multicenter one and

two electron integrals were computed by means of the zeta function expansion

method developed by Barnett and Coulson. (9), (10) The values were checked
against the recently reported results of Karplus and Shavitt. (11)

The inadequacy of the W2p approximation has been discussed by
Stewart (12 ) and by others. The choice of an adequate core approximation

has been investigated in considerable detail by Ruedenberg. (13) The one

electron Hamiltonian is split into two parts: (i) a part that accommodates

the nuclear framework and the kinetic energy. This part can be regarded

as "a short range force". (ii) a coulombic part that is due to the charge
cloud of the pi electrons of the delocalized system. This part can be

regarded as a "long range force". The matrix elements of the short range
forces decrease so rapidly with distance that only the nearest neighbor

interactions are retained in auedenberg' s treatment. This amounts to
the use of a "tight binding" approximation. All the matrix elements of

long range forces are computed by Ruedenberg who also allows the orbital
exponent ; of the atomic orbital X p to differ from the orbital exponent ;c

of the four orbitals that form the core which produces the electrostatic
potential Ur(1) of Eq. (4). The values of ; and c are chosen by reference

to the known values for the ionization potential and the electron affinity of

the valence state of carbon. Columns six and seven of our Table I show the

result of a recalculation based on the "tight binding" approximation, using

accurate values for the multicentre integrals. The values used for 4, and

are 1. 6178932 and 1.12863045 respectively.



90. THE Pi ELECTRONIC STRUCTURE OF THE BENZENE MOLECULE

We have performed a second order perturbation theory treatment as
~well as a one parameter, alternant molecular orbital calculation on the

ground state. The results are displayed in Table II. Since the MO' s are

solutions of a Hartree-Fock Hamiltonian, Brillouin' s theorem applies, and

the only matrix components which exist are those connecting the ground

state with doubly substituted configurations. There are eight such configu-

rations which interact with the ground state and in the CI treatment their

coefficients are large, as anticipated. The 9X9 secular equation between

these states has been diagonalized. To help visualize the complex wave

function the first order density matrix in the MO basis is given in Table III.

Due to the high symmetry the MO' s also are the natural spin orbitals, and

the first order density matrix is diagonal.

Several points arise from an analysis of the tabulated resits. The most

striking is the fact that improving the configuration interaction tends to

decrease the multiplet separation. This is particularly true for the im-

portant 3Blu state. In general, the more that the pi wave function is

improved through CI, the worse is the agreement with experiment. This

seems to be true regardless of the core approximation that is chosen.

Moreover, there is no a priori method for choosing the important configu-

rations. The use of accurate values for the exact integrals does not have

any substantial effect on the energy level scheme. The wave functions,

however, are quite sensitive to the use of accurate integrals as is shown

by the change in both the eigenvectors and the first order density matrices.

The above results lead one to conclude with de Heer 14 that

irrespective of the problem of electron correlation, "there is an essential

defect in our present quantitative approach to the quantum chemistry of

conjugated hydrocarbons." A possible remedy would be to explicitly in-

clude the sigma electrons. A recent extended HUckel calculation by HoffmaP15

would seem to lend support to this point of view. Hoffman found that the

lowest bonding pi orbital of benzene was located below some of the sigma

levels. (16) This implies that sigma-pi interaction may be of greater

importance than heretofore cons idered. Despite the great complexity of the

problem work in this direction is in progress.

i
I
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Table II

Electronic Energy of the Ground State (1 A) in Atomic Units (2 Ryd) by:

(a) GMS Core PCR Integrals, (b) GMS Core Accurate Integrals,

(c) Ruedenberg Core Accurate Integrals.

a b c

MO -4.2421 -4.2505 -9. 0534

CI(9) -4.3420 -4. 3508 -9. 1471

CI(22) -4.3557 -4. 3644 -9. 1596

2nd Order -4.3283 -4. 3398 -9. 1369

AMO -4.3303 -4. 3379 -9. 1260
X 0.69 0.70 0.72

Table Ill

First order Density Matrix for the Ground State (IAlg) in MO Basis with

CI by: (a) PCR Integrals GMS Core, (b) GMS Core Accurate Integrals,

(c) Ruedenberg Core Accurate Integrals.

CI(Ntm 0 *1 * 3

a (22) 1.9162 1. 8034 0. 1970 0. 0830
b (22) 1.9172 1.8086 0. 1932 0.0793

c (22) 1.8922 1.8465 0. 1634 0.0879

a (9) 1.9404 1.8583 0. 1421 0.0587

b (9) 1.9410 1.8620 0. 1392 0.0566

c (9) 1.9279 1.8936 0. 1118 0.0612

I _ _ _ _
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